精英家教网 > 初中数学 > 题目详情
11.如图,把矩形纸片ABCD进行折叠,已知该纸片的长BC为10cm,宽AB为6cm.
(1)若折叠后C点和点A重合,折痕交边BC,AD分别于点E,F,如图1,求证:四边形AECF为菱形;
(2)若折叠后C点落在边AD上的N点处,折痕为BM(M为折痕与CD边的交点),如图2,求CM的长.

分析 (1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;
(2)在Rt△BAN中,根据勾股定理可求AN,进一步得到DN,再在Rt△MDN中,根据勾股定理可求CM的长.

解答 (1)证明:如图1,
∵矩形ABCD折叠使A,C重合,折痕为EF,
∴OA=OC,EF⊥AC,EA=EC,
∵AD∥AC,
∴∠FAC=∠ECA,
在△AOF和△COE中,
$\left\{\begin{array}{l}{∠FAO=∠ECO}\\{AO=CO}\\{∠AOF=∠COE}\end{array}\right.$,
∴△AOF≌△COE,
∴OF=OE,
∵OA=OC,AC⊥EF,
∴四边形AECF为菱形;

(2)解:在Rt△BAN中,AN=$\sqrt{1{0}^{2}-{6}^{2}}$=8cm,
DN=10-8=2cm,
在Rt△MDN中,
CM2=22+(6-CM)2
解得CM=$\frac{10}{3}$.
故CM的长是$\frac{10}{3}$cm.

点评 本题考查了菱形的判定与性质:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.也考查了折叠的性质,矩形的性质和勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,△ABC为等腰直角三角形,∠ACB=90°,直线l经过点A且绕点A在△ABC所在平面内转动,作BD⊥l,CE⊥l,D、E为垂足.
(1)如图a,求证:DA+DB=2DE;
(2)在图b和图c中,(1)的结论是否成立?若成立,请说明理由;若不成立?直接写出DE、DA、DB三条线段的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先阅读下面的内容,再解决问题:
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:m2+2mn+2n2-6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
(1)若x2+2y2-2xy+4y+4=0,求x2的值.
(2)已知整数a、b、c是不等边△ABC的三边长,满足a2+b2=6a+8b-25,且c是△ABC中最长的边,求c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在Rt△ABC中,∠C=90°,AC=4,BC=3,
(1)AB=5;
(2)若经过点C且与边AB相切的动圆与边CB、CA分别相交于点E、F,则线段EF长度的取值范围是$\frac{12}{5}$≤EF<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知a、b分别是5-$\sqrt{5}$的整数部分和小数部分,求4ab-b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.a,b,c不在同一平面内,a∥b,b∥c,那么a∥c是真命题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点A,B,C都在⊙O上,若∠OAC=17°,∠ACB=46°,AC与OB交于点D,则∠ODA的度数为71度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,点D(0,-4),点C(3,0),△ABC是等腰直角三角形,腰AC=BC,反比例函数y=$\frac{k}{x}$的图象经过点A(2,n)和点B.
(1)过点B作BH垂直于x轴于点H,求线段BH的长;
(2)求反比例函数的表达式;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知,在平面直角坐标系中,A(m-2,a),B(m+2,b),且有理数a,b满足a+2+$\sqrt{2}$b=4$\sqrt{2}$+b.
(1)试求出a,b的值,并直接写出以AB为对角线的平行四边形AOBC的第四顶点C的纵坐标;
(2)若△AOB的面积为9,求m的值;
(3)若直线AB与x轴交于点D,当线段AB平移时,△ABC的面积:△AOD的面积是否是定值?若是定值,请求出该值,并说明理由;若不是,请指出它的范围.

查看答案和解析>>

同步练习册答案