精英家教网 > 初中数学 > 题目详情
10、已知点A(1,1)在平面直角坐标系中,在x轴上确定点P使△AOP为等腰三角形.则符合条件的点P共有
4
个.
分析:本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,共有4个
解答:解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个
当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有1个;
(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.
以上4个交点没有重合的.故符合条件的点有4个.
故答案为:4.
点评:本题考查了坐标与图形的性质及等腰三角形的判定.对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知点P(2,-2)在反比例函数y=
kx
(k≠0)的图象上,
(1)求k的值.
(2)当x=-2时,求y的值.
(3)当1<x<3时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•增城市一模)已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1(其中x是自变量)上.
(1)求抛物线的对称轴;
(2)若B点与A点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B的直线?如果存在,求符合条件的直线解析式;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P(a,b)在第四象限,则Q(b,a)在
第二象限
第二象限

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在(  )

查看答案和解析>>

同步练习册答案