【题目】在平面直角坐标系中,抛物线的最高点的纵坐标是2.
(1)求抛物线的表达式;
(2)将抛物线在之间的部分记为图象,将图象沿直线x=1翻折,翻折后图象记为,图象和组成G,直线:和图象G在x轴上方的部分有两个公共点,求k的取值范围;
(3)直线:与图象G在x轴上方的部分分别交于A、M、P、Q四点,若AM=2PQ,求的值.
【答案】(1);(2)k的取值范围为:;(3).
【解析】
(1)根据抛物线顶点坐标公式,求出a的值,进而即可求解;
(2)分别求出当直线与抛物线在x轴上方部分只有一个交点时,k的值,以及当直线与抛物线在x轴上方部分只有一个交点时,k的值,即可得到k的取值范围;
(3)联立,联立,分别得到,,结合,得到关于k的方程,即可求解.
(1)∵,解得:a=-2,
∴抛物线的表达式为:;
(2)当直线与抛物线在x轴上方部分只有一个交点时,
联立,得:,
∴,即:,解得:,
∵(舍去)
∴,
将图像沿直线x=1翻折,翻折后图像记为:(),
当直线与抛物线在x轴上方部分只有一个交点时,
联立,得:,
∴,解得:k=4,
∴k的取值范围:;
(3)联立,得:,
解得:,
∴,
联立,得:,
同理得:,
∵,
∴,
∴=2
解得:或
∵,
∴.
科目:初中数学 来源: 题型:
【题目】某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,、是的中线,于点,像这样的三角形均称为“中垂三角形”.
(特例探究)
(1)如图1,当,时,_____,______;
如图2,当,时,_____,______;
(归纳证明)
(2)请你观察(1)中的计算结果,猜想、、三者之间的关系,用等式表示出来,并利用图3证明你的结论;
(拓展证明)
(3)如图4,在中,,,、、分别是边、的中点,连结并延长至,使得,连结,当于点时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于边形,甲、乙、丙三位同学有以下三种说法:
甲:五边形的内角和为
乙:正六边形每个内角为
丙:七边形共有对角线14条
(1)判断三种说法是否正确,并对其中你认为不对的说法用计算进行说明
(2)若边形的对角线共35条,求该边形的内角和
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D、E分别在边AB、BC上,AD=BE,CD与AE交于F.
(1)求∠AFD的度数;
(2)若BE=m,CE=n.
①求的值;(用含有m和n的式子表示)
②若=,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东67°方向,距离B地520km,C地位于A地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要测量一垂直于水平面的建筑物AB的高度,小明从建筑物底端B出发,沿水平方向向右走30米到达点C,又经过一段坡角为30°,长为20米的斜坡CD,然后再沿水平方向向右走了50米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,求建筑物AB的高度.(结果保留根号,参考数据:sin24°≈,cos24°≈,tan24°=)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④;正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
(1)求A种,B种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为2和6,对角线BD∥x轴,若菱形ABCD的面积为40,则k的值为( )
A.15B.10C.D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com