3£®½ÌÊÒÀïµÄÒûË®»ú½ÓͨµçÔ´¾Í½øÈë×Ô¶¯³ÌÐò£¬¿ª»ú¼ÓÈÈʱÿ·ÖÖÓÉÏÉý10¡æ£¬¼ÓÈȵ½100¡æ£¬Í£Ö¹¼ÓÈÈ£¬Ë®Î¿ªÊ¼Ï½µ£¬´ËʱˮΣ¨¡æ£©Ó뿪»úºóÓÃʱ£¨min£©³É·´±ÈÀý¹Øϵ£®Ö±ÖÁˮνµÖÁ30¡æ£¬ÒûË®»ú¹Ø»ú£®ÒûË®»ú¹Ø»úºó¼´¿Ì×Ô¶¯¿ª»ú£¬Öظ´ÉÏÊö×Ô¶¯³ÌÐò£®ÔÚË®ÎÂΪ30¡æʱ£¬½ÓͨµçÔ´ºó£¬Ë®ÎÂy£¨¡æ£©ºÍʱ¼äx£¨min£©µÄ¹ØϵÈçͼ£¬
£¨1£©a=7£»
£¨2£©Ö±½Óд³öͼÖÐy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨3£©ÒûË®»úÓжàÉÙʱ¼äÄÜʹˮα£³ÖÔÚ70¡æ¼°ÒÔÉÏ£¿
£¨4£©ÈôÒûË®»úÔçÉÏÒѾ­¼ÓÂúË®£¬¿ª»úζÈÊÇ20¡æ£¬ÎªÁËʹ8£º40Ï¿Îʱˮδﵽ70¡æ¼°ÒÔÉÏ£¬²¢½ÚÔ¼ÄÜÔ´£¬Ö±½Óд³öµ±ÌìÉÏÎçʲôʱ¼ä½ÓͨµçÔ´±È½ÏºÏÊÊ£¿

·ÖÎö £¨1£©¸ù¾ÝÌâÒâºÍº¯ÊýͼÏó¿ÉÒÔÇóµÃaµÄÖµ£»
£¨2£©¸ù¾Ýº¯ÊýͼÏóºÍÌâÒâ¿ÉÒÔÇóµÃy¹ØÓÚxµÄº¯Êý¹Øϵʽ£¬×¢Ò⺯ÊýͼÏóÊÇÑ­»·³öÏֵģ»
£¨3£©¸ù¾Ý£¨2£©Öеĺ¯Êý½âÎöʽ¿ÉÒÔ½â´ð±¾Ì⣻
£¨4£©¸ù¾ÝÌâÒâºÍ£¨3£©ÖеĽá¹û¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
a=£¨100-30£©¡Â10=70¡Â10=7£¬
¹Ê´ð°¸Îª£º7£»
£¨2£©µ±0¡Üx¡Ü7ʱ£¬Éèy¹ØÓÚxµÄº¯Êý¹ØϵʽΪ£ºy=kx+b£¬
$\left\{\begin{array}{l}{b=30}\\{7k+b=100}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{k=10}\\{b=30}\end{array}\right.$£¬
¼´µ±0¡Üx¡Ü7ʱ£¬y¹ØÓÚxµÄº¯Êý¹ØϵʽΪy=10x+30£¬
µ±x£¾30ʱ£¬Éèy=$\frac{a}{x}$£¬
100=$\frac{a}{7}$£¬µÃa=700£¬
¼´µ±x£¾30ʱ£¬y¹ØÓÚxµÄº¯Êý¹ØϵʽΪy=$\frac{700}{x}$£¬
µ±y=30ʱ£¬x=$\frac{70}{3}$£¬
¡àyÓëxµÄº¯Êý¹ØϵʽΪ£ºy=$\left\{\begin{array}{l}{10x+30}&{£¨0¡Üx¡Ü7£©}\\{\frac{700}{x}}&{£¨7£¼x¡Ü\frac{70}{3}£©}\end{array}\right.$£¬yÓëxµÄº¯Êý¹Øϵʽÿ$\frac{70}{3}$·ÖÖÓÖظ´³öÏÖÒ»´Î£»
£¨3£©½«y=70´úÈëy=10x+30£¬µÃx=4£¬
½«y=70´úÈëy=$\frac{700}{x}$£¬µÃx=10£¬
¡ß10-4=6£¬
¡àÒûË®»úÓÐ6·ÖÖÓÄÜʹˮα£³ÖÔÚ70¡æ¼°ÒÔÉÏ£»
£¨4£©ÓÉÌâÒâ¿ÉµÃ£¬
6+£¨70-20£©¡Â10=11£¨·ÖÖÓ£©£¬
¡à40-11=29£¬
¼´8£º29¿ª»ú½ÓͨµçÔ´±È½ÏºÏÊÊ£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯ÊýµÄÓ¦Óá¢Ò»´Îº¯ÊýµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÊýÐνáºÏµÄ˼ÏëºÍº¯ÊýµÄ˼Ïë½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ËıßÐÎABCOÊÇƽÐÐËıßÐÎÇÒµãC£¨-4£¬0£©£¬½«Æ½ÐÐËıßÐÎABCOÈƵãAÄæʱÕëÐýתµÃµ½Æ½ÐÐËıßÐÎADEF£¬AD¾­¹ýµãO£¬µãFÇ¡ºÃÂäÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÈôµãA£¬DÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÉÏ£¬¹ýA×÷AH¡ÍxÖᣬ½»EFÓÚµãH£®
£¨1£©Ö¤Ã÷£º¡÷AOFÊǵȱßÈý½ÇÐΣ¬²¢ÇókµÄÖµ£»
£¨2£©ÔÚxÖáÉÏÕÒµãG£¬Ê¹¡÷ACGÊǵÈÑüÈý½ÇÐΣ¬Çó³öGµÄ×ø±ê£»
£¨3£©ÉèP£¨x1£¬a£©£¬Q£¨x2£¬b£©£¨x2£¾x1£¾0£©£¬M£¨m£¬y1£©£¬N£¨n£¬y2£©ÊÇË«ÇúÏßy=$\frac{k}{x}$ÉϵÄËĵ㣬m=$\sqrt{\frac{a+b}{2k}}$£¬n=$\sqrt{\frac{2}{{{x_1}+{x_2}}}}$£¬ÊÔÅжÏy1£¬y2µÄ´óС£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©Èçͼ¢Ù£¬¡ÏACB=¡ÏADB=90¡ã£¬ÄÇôµãDÔÚ¾­¹ýA£¬B£¬CÈýµãµÄÔ²ÉÏÂð£¿ÈôÔÚÇë»­³ö¾­¹ýA£¬B£¬C£¬DµÄÔ²£¨²»Ð´»­·¨£¬±£Áô»­ºÛ£©£¬Èô²»ÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©Èçͼ¢Ú£¬Èç¹û¡ÏACB=¡ÏADB=¦Á£¨¦Á¡Ù90¡ã£©£¨µãC£¬DÔÚABµÄͬ²à£©£¬²ÂÏ룺µãD»¹ÔÚ¾­¹ýA£¬B£¬CÈýµãµÄÔ²ÉÏÂ𣿣¨Ö»Ð´³öÄãµÄ²ÂÏ룬²»ÐèÖ¤Ã÷£®£©
£¨3£©ÈôËıßÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏCAD=90¡ã£¬µãEÔÚ±ßABÉÏ£¬CE¡ÍDE£®
£¨i£©×÷¡ÏADF=¡ÏAED£¬½»CAµÄÑÓ³¤ÏßÓÚµãF£¨Èçͼ¢Û£©£¬ÇóÖ¤£ºDFΪ Rt¡÷ACDµÄÍâ½ÓÔ²µÄÇÐÏߣ®
£¨ii£©Èçͼ¢Ü£¬µãGÔÚBCµÄÑÓ³¤ÏßÉÏ£¬¡ÏBGE=¡ÏBAC£¬ÒÑÖªsin¡ÏAED=$\frac{2}{3}$£¬AD=1£¬ÇóDGµÄ³¤£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚ?ABCDÖУ¬ÒÔBCΪб±ßÔÚ?ABCDÄÚ×÷µÈÑüÖ±½Ç¡÷BCE£¬Á¬½ÓDE£¬¹ýµãE×÷EF¡ÍDE½»ADÓÚµãF£¬¡ÏCDE=¡ÏCED=¡ÏDCB£®
£¨1£©ÈôBC=2$\sqrt{2}$£¬ÇóAEµÄ³¤£»
£¨2£©Á¬½ÓFB£¬ÇóÖ¤£ºEF+FA=FB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èô´úÊýʽ£¨A-$\frac{3}{a-1}$£©•$\frac{2a-2}{a+2}$µÄ»¯¼ò½á¹ûΪ2a-4£®ÔòÕûʽAΪ£¨¡¡¡¡£©
A£®a+1B£®a-1C£®-a-1D£®-a+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®2sin60¡ã-£¨$\frac{1}{2}$£©-2+£¨¦Ð-$\sqrt{5}$£©0=$\sqrt{3}$-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬µãDÊÇABÉÏÒ»µã£¬ÒÔCDΪֱ¾¶×÷¡ÑO£¬½»ACÓÚµãE£¬Á¬½ÓBE·Ö±ð½»CDºÍ¡ÑOÓÚµãF£¬G£¬Á¬½ÓDE£¬DG£¬ÇÒ¡ÏBDG=¡ÏBED£®
£¨1£©ÅжÏABÓë¡ÑOµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôBEƽ·Ö¡ÏABC£¬ÇÒCF=$\sqrt{2}$£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÎÒ¹ú½øÐеÄÊ״οÉȼ±ù£¨ÌìÈ»ÆøË®ºÏÎÊÔ²ÉʵÏÖÁ¬Ðø187СʱÎȶ¨²úÆø£¬È¡µÃÌìÈ»ÆøË®ºÏÎïÊÔ¿ª²ÉµÄÀúÊ·ÐÔÍ»ÆÆ£¬Ê״οÉȼ±ùÊÔ²ÉÐû¸æ³É¹¦£¬¾Ý²âË㣬ÖйúÄϺ£ÌìÈ»ÆøË®ºÏÎïµÄ×ÊÔ´Á¿Îª700ÒÚ¶ÖÓ͵±Á¿£¬700ÒÚÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®700¡Á108B£®70¡Á108C£®7¡Á1010D£®0.7¡Á109

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªmÊǺ¯Êýy=$\sqrt{-3x+4}$+$\frac{1}{x}$×Ô±äÁ¿È¡Öµ·¶Î§ÄÚµÄÒ»¸ö·Ç¸ºÕûÊý£¬Ôòm£¨m+1£©-£¨m-2£©2µÄƽ·½¸ùÊÇ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸