【题目】我们在学习《从面积到乘法公式》时,曾用两种不同的方法计算同一个图形的面积,探索了单项式乘多项式的运算法则:m(a+b+c)=ma+mb+mc(如图1),多项式乘多项式的运算法则:
(a+b)(c+d)=ac+ad+bc+bd(如图2),以及完全平方公式:(a+b)2=a2+2ab+b2(如图3).
把几个图形拼成一个新的图形,通过图形面积的计算,常常可以得到一些等式,这是研究数学问题的一种常用方法.
(1)请设计两个图形说明一下两个等式成立(画出示意图,并标上字母)
①(a+b)(2a+b)=2a2+3ab+b2
②(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(2)如图4,它是由四个形状、大小完全相同的直角三角形与中间的小正方形EFGH拼成的一个大正方形ABCD.如果每个直角三角形的较短的边长为a,较长的边长为b,最长的边长为c.试用两种不同的方法计算这个大正方形的面积,你能发现直角三角形的三边长a、b、c的什么数量关系?(注:写出解答过程)
科目:初中数学 来源: 题型:
【题目】如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内.
(1)若OE平分∠BOC,则∠DOE等于多少度?
(2)若∠BOE=∠EOC,∠DOE=60°,则∠EOC是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,请填写AE∥PF的理由.
解:因为∠BAP+∠APD=180° ,
∠APC+∠APD=180° ,
所以∠BAP=∠APC .
又∠1=∠2 ,
所以∠BAP﹣∠1=∠APC﹣∠2 .
即∠EAP=∠APF.
所以AE∥PF .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点D、E分别是边BC、AC的中点,过点A作交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当满足什么条件时,四边形图ADCF是菱形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别连接正方形对边的中点,能将正方形划分成四个面积相等的小正方形用上述方法对一个边长为1的正方形进行划分,第1次划分得到图1,第2次划分图2,则第3次划分得到的图中共有______个正方形,借助划分得到的图形,计算的结果为______(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判断△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚与小明在玩数字游戏,现有5张写着不同数字的卡片(如图),小刚请小明按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上的数字乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,如何抽取?最小值是多少?
(3)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.
下列判断:
①当x>0时,y1>y2;
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com