精英家教网 > 初中数学 > 题目详情
19.观察规律并填空.
(1-$\frac{1}{{2}^{2}}$)=$\frac{1}{2}•\frac{3}{2}$=$\frac{3}{4}$;
(1$-\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}$=$\frac{1}{2}•\frac{4}{3}=\frac{2}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}\frac{7}{12}=\frac{1}{2}•\frac{5}{4}=\frac{5}{8}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}•\frac{5}{4}•\frac{4}{5}•\frac{6}{5}=\frac{1}{2}•\frac{6}{5}=\frac{3}{5}$;
计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)(1-$\frac{1}{{6}^{2}}$)=$\frac{7}{12}$;
应用:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$.(用含n的代数式,n是正整数,且n≥2)

分析 根据(1-$\frac{1}{{2}^{2}}$)=$\frac{1}{2}•\frac{3}{2}$=$\frac{3}{4}$;(1$-\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}$=$\frac{1}{2}•\frac{4}{3}=\frac{2}{3}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}\frac{7}{12}=\frac{1}{2}•\frac{5}{4}=\frac{5}{8}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}•\frac{5}{4}•\frac{4}{5}•\frac{6}{5}=\frac{1}{2}•\frac{6}{5}=\frac{3}{5}$;可得(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)(1-$\frac{1}{{6}^{2}}$)=$\frac{1}{2}$$•\frac{7}{6}$=$\frac{7}{12}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$,据此解答即可.

解答 解:∵(1-$\frac{1}{{2}^{2}}$)=$\frac{1}{2}•\frac{3}{2}$=$\frac{3}{4}$;
(1$-\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}$=$\frac{1}{2}•\frac{4}{3}=\frac{2}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}\frac{7}{12}=\frac{1}{2}•\frac{5}{4}=\frac{5}{8}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}•\frac{5}{4}•\frac{4}{5}•\frac{6}{5}=\frac{1}{2}•\frac{6}{5}=\frac{3}{5}$;
∴(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)(1-$\frac{1}{{6}^{2}}$)=$\frac{1}{2}$$•\frac{7}{6}$=$\frac{7}{12}$;
∴(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$.
故答案为:$\frac{7}{12}、\frac{n+1}{2n}$.

点评 此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结出规律,并能正确的应用规律,解答此题的关键是判断出:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知m<n,利用不等式的性质比较-2m-1与-2n-1的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.分解因式:4m2-36mn+81n2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知x2-8x-7与3x+1互为相反数,则x的值为6或-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,抛物线y=nx2-11nx+24n(n<0)与x轴交于B、C两点(的左侧点B在点C),抛物线上另有一点A在第一象限内,∠BAC=90°,△OAC为等腰三角形.
(1)求此时抛物线的解析式;
(2)如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N.试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在①正三角形,②正方形,③正五边形,④正六边形,⑤圆,这五种几何图形中,既是轴对称,又是中心对称图形的是(  )
A.①②④⑤B.②③④⑤C.②④⑤D.①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.关于x的方程$\frac{x+k}{{{x^2}-1}}+\frac{x}{1-x}$=2有增根x=-1,则k=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在如图水平放置的几何体中,其三种视图都不可能是长方形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A的度数.

查看答案和解析>>

同步练习册答案