精英家教网 > 初中数学 > 题目详情

【题目】二次函数 的图象如图所示,反比例函数 与正比例函数 在同一坐标系中的大致图象可能是( )

A.
B.
C.
D.

【答案】B
【解析】根据二次函数可得:a>0,当x=1时,即a+b+c<0,∴b+c<-a,即b+c<0,∴反比例函数处于一、三象限;正比例函数处于二、四象限.
【考点精析】认真审题,首先需要了解一次函数的性质(一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小),还要掌握反比例函数的性质(性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:

(1)共抽取了  名同学进行调查,同学们的睡眠时间的中位数是  小时左右,并将条形统计图补充完整;

(2)请你估计年级每个学生的平均睡眠时间约多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD.∠1=2,∠3=4,试说明 ADBE,请你将下面解答过程填写完整.

解:∵ABCD

∴∠4=

∵∠3=4

∴∠3= (等量代换)

∵∠1=2

∴∠1+CAF=2+CAE 即∠BAE=

∴∠3=

ADBE ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD的顶点为A12),B(﹣12),C,(﹣1,﹣2),D1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N2017次相遇时的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB 于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时间为t(秒).

(1)求点P在AC边上时PQ的长,(用含t的代数式表示);
(2)求点R到AC、PQ所在直线的距离相等时t的取值范围;
(3)当点P在AC边上运动时,求S与t之间的函数关系式;
(4)直接写出点R落在△ABC高线上时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBCDBD=ADDG=DCEF分别是BGAC的中点.

1)求证:DE=DFDEDF

2)连接EF,若AC=10,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是(  )

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,∠C90°,∠A30°.

1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);

2)在已作的图形中,若l分别交ABACBC的延长线于点DEF,连接BE.求证:EF2DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,△ABC是 的内接等边三角形,AB=1.点DE在圆上,四边形 为矩形,则这个矩形的面积是( )

A.
B.
C.
D.1

查看答案和解析>>

同步练习册答案