【题目】已知二次函数 (为常数),当自变量的值满足时,其对应的函数值的最大值为,则的值为 ( )
A.2或4B.0或-4C.2或-4D.0或4
科目:初中数学 来源: 题型:
【题目】如图,矩形中,AB=8,BC=6,点是射线上一动点,设.过点做射线的垂线段,垂足为,作的垂直平分线交射线于点,交直线于.
点在边上时.①用含的代数式表示.②当时,直线ON交射线CD于,求CE的长.
当为何值时,过三点的圆与矩形的边或对角线相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.
(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离(千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:
(1)求直线所对应的函数关系式;
(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形边长为2,、分别是、上两动点,且满足,交于点.
(1)如图1,判断线段、的位置关系,并说明理由;
(2)在(1)的条件下,连接,直接写出的最小值为 ;
(3)如图2,点为的中点,连接.
①求证:平分;
②求线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.
(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是 ;
(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com