精英家教网 > 初中数学 > 题目详情

【题目】如图,A为反比例函数y(其中x0)图象上的一点,在x轴正半轴上有一点BOB4.连接OAAB,且OAAB2

1)求k的值;

2)过点BBCOB,交反比例函数yx0)的图象于点C

连接AC,求△ABC的面积;

在图上连接OCAB于点D,求的值.

【答案】1k12;(2①3

【解析】

(1)过点AAHx轴,垂足为点HAHOC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;

(2)①由三角形面积公式可求解;

②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AMBC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.

(1)过点AAHx轴,垂足为点HAHOC于点M,如图所示.

OA=ABAHOB

∴点A的坐标为(26).

A为反比例函数图象上的一点,

(2)BCx轴,OB=4,点C在反比例函数上,

AHOB

AHBC

∴点ABC的距离=BH=2

SABC

BCx轴,OB=4,点C在反比例函数上,

AHBCOH=BH

MH=BC=

AMBC

∴△ADM∽△BDC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育用品商店购进一批乒乓球拍,每件进价为10元,售价为30元,每星期可卖出40件.商家决定降价促销,根据市场调查,每降价1元,每星期可多卖出4件.

1)求商家降价前每星期的销售利润为多少元?

2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,若∠B=60°,点EF分别在ABAD上,且BE=AF,则∠AEC+∠AFC的度数等于(

A.120°B.140°C.160°D.180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DGBE

1)发现:当正方形AEFG绕点A旋转,如图②所示.

①线段DGBE之间的数量关系是   

②直线DG与直线BE之间的位置关系是   

2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD2ABAG2AE时,上述结论是否成立,并说明理由.

3)应用:在(2)的情况下,连接BGDE,若AE1AB2,求BG2+DE2的值(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣(xm2+4m0)的顶点为A,与直线x相交于点B,点A关于直线x的对称点为C

1)若抛物线y=﹣(xm2+4m0)经过原点,求m的值.

2)点C的坐标为   .用含m的代数式表示点B到直线AC的距离为   

3)将y=﹣(xm2+4m0,且x)的函数图象记为图象G,图象G关于直线x的对称图象记为图象H.图象G与图象H组合成的图象记为图象M

①当图象Mx轴恰好有三个交点时,求m的值.

②当ABC为等腰直角三角形时,直接写出图象M所对应的函数值小于0时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=x+m2+k的图象,其顶点坐标为M1﹣4

1)求出图象与x轴的交点AB的坐标;

2)在二次函数的图象上是否存在点P,使SPAB=SMAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线正半轴于点,将抛物线先向右平移3个单位,再向上平移3个单位得到抛物线交于点,直线于点

1)求抛物线的解析式;

2)点是抛物线间的一点,作轴交抛物线于点,连接.设点的横坐标为,当为何值时,使的面积最大,并求出最大值;

3)如图2,将直线向下平移,交抛物线于点,交抛物线于点,则的值是否为定值,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.

1求∠CDE的度数;

2求证:DF是⊙O的切线;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

同步练习册答案