精英家教网 > 初中数学 > 题目详情
(2010•绍兴)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

【答案】分析:(1)根据OA、AB、OC的长,即可得到A、B、C三点的坐标,进而可用待定系数法求出抛物线的解析式;
(2)此题要通过构造全等三角形求解;过B作BM⊥x轴于M,由于∠EBF是由∠DBC旋转而得,所以这两角都是直角,那么∠EBF=∠ABM=90°,根据同角的余角相等可得∠EBA=∠FBM;易知BM=OA=AB=2,由此可证得△FBM≌△EBA,则AE=FM;CM的长易求得,关键是FM即AE的长;设抛物线的顶点为G,由于G点在线段AB的垂直平分线上,若过G作GH⊥AB,则GH是△ABE的中位线,G点的坐标易求得,即可得到GH的长,从而可求出AE的长,即可由CF=CM+FM=AE+CM求出CF的长;
(3)由(2)的全等三角形易证得BE=BF,则△BEF是等腰直角三角形,其面积为BF平方的一半;△BFC中,以CF为底,BM为高即可求出△BFC的面积;可设CF的长为a,进而表示出FM的长,由勾股定理即可求得BF的平方,根据上面得出的两个三角形的面积计算方法,即可得到关于S、a的函数关系式,根据函数的性质即可求出S的最小值及对应的CF的长.
解答:解:
(1)由题意可得A(0,2),B(2,2),C(3,0),
设所求抛物线的解析式为y=ax2+bx+c,

解得;(3分)
∴抛物线的解析式为y=-+x+2;(1分)

(2)设抛物线的顶点为G,
则G(1,),过点G作GH⊥AB,垂足为H,
则AH=BH=1,GH=-2=
∵EA⊥AB,GH⊥AB,
∴EA∥GH;
∴GH是△BEA的中位线,
∴EA=2GH=;(2分)
过点B作BM⊥OC,垂足为M,则BM=OA=AB;
∵∠EBF=∠ABM=90°,
∴∠EBA=∠FBM=90°-∠ABF,
∴Rt△EBA≌Rt△FBM,
∴FM=EA=
∵CM=OC-OM=3-2=1,
∴CF=FM+CM=(2分);

(3)设CF=a,则FM=a-1,
∴BF2=FM2+BM2=(a-1)2+22=a2-2a+5,
∵△EBA≌△FBM,
∴BE=BF,
则S△BEF=BE•BF=(a2-2a+5),(1分)
又∵S△BFC=FC•BM=×a×2=a,(1分)
∴S=(a2-2a+5)-a=a2-2a+
即S=(a-2)2+;(1分)
∴当a=2(在0<a<3范围内)时,S最小值=.(1分)
点评:此题主要考查了二次函数解析式的确定、全等三角形的判定和性质以及三角形面积的求法等重要知识点,能够正确的将求图形面积最大(小)问题转换为二次函数求最值的问题是解答(3)题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•绍兴)如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省绍兴市中考数学试卷(解析版) 题型:解答题

(2010•绍兴)如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2010•绍兴)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2010•绍兴)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.

查看答案和解析>>

同步练习册答案