精英家教网 > 初中数学 > 题目详情
11.如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:$\sqrt{3}$,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,$\sqrt{3}$取1.73.

分析 首先过点D作DM⊥BC于点M,DN⊥AC于点N,由FA的坡比i=1:$\sqrt{3}$,DA=6,可求得AN与DN的长,然后设大树的高度为x,又由在斜坡上A处测得大树顶端B的仰角是48°,可得AC=$\frac{x}{1.11}$,又由在△ADM中,$\frac{AM}{DM}$=$\frac{\sqrt{3}}{3}$,可得x-3=(3$\sqrt{3}$+$\frac{x}{1.11}$)•$\frac{\sqrt{3}}{3}$,继而求得答案.

解答 解:过点D作DM⊥BC于点M,DN⊥AC于点N,
则四边形DMCN是矩形,
∵DA=6,斜坡FA的坡比i=1:$\sqrt{3}$,
∴DN=$\frac{1}{2}$AD=3,AN=AD•cos30°=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
设大树的高度为x,
∵在斜坡上A处测得大树顶端B的仰角是48°,
∴tan48°=$\frac{BC}{AC}$≈1.11,
∴AC=$\frac{x}{1.11}$,
∴DM=CN=AN+AC=3$\sqrt{3}$+$\frac{x}{1.11}$,
∵在△ADM中,$\frac{AM}{DM}$=$\frac{\sqrt{3}}{3}$,
∴x-3=(3$\sqrt{3}$+$\frac{x}{1.11}$)•$\frac{\sqrt{3}}{3}$,
解得:x≈13.
答:树高BC约13米

点评 本题考查的是解直角三角形的应用-仰角俯角问题,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.一只不透明的袋子中装有3个白球,4个黄球,每个球除颜色外完全相同,从袋子中随机摸出一个球,摸到黄球的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.阳明山万寿寺前有11级台阶,小敏一步只能上1级台阶或2级台阶,那么:1级台阶只有1种走法:记为(1);2级台阶有两种走法:记为(1、1)、(2);3级台阶有3种走法:记为(1、1、1)、(1、2)、(2、1);4级台阶有5种走法:记为(1、1、1、1);(1、1、2)(1、2、1);(2、1、1);(2、2),小敏发现当台阶数分别为1级、2级、3级、4级、5级、6级、…逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、…这就是著名的斐波那契数列.那么小敏上这11级台阶共有(  )种不同走法.
A.34B.89C.144D.233

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:$\frac{{x}^{2}-6x+9}{{x}^{2}-3x}$÷($\frac{9}{x}$-x),其中x=$\sqrt{2}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C,M为抛物线的顶点.
(1)求这个二次函数的表达式;
(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△BOC的内部(不包含边界),求m的取值范围;
(3)点P是抛物线上一动点,PQ∥BC交x轴于点Q,当以点B,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:$\frac{3}{x-1}$+$\frac{x}{1-x}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知关于x的一元二次方程ax2+bx+c=5的一个根是2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线y=ax2+bx+c的顶点坐标为(2,5).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图所示的两幅不完整的统计图,已知该校有1200名学生,估计全校最喜爱文学类图书的学生有480人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:(16${\;}^{\frac{3}{2}}$×5-3)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

同步练习册答案