精英家教网 > 初中数学 > 题目详情
12.如图,等边三角形ABC中,点D、E、F、分别为边AB,AC,BC的中点,M为直线BC动点,△DMN为等边三角形
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论是否仍然成立?若成立,请直接写出结论,若不成立请说明理由.

分析 (1)连接DE、DF,根据等边三角形的性质得到∠MDF=∠NDE,证明△DMF≌△DNE,根据全等三角形的性质证明;
(2)与(1)的方法相同;
(3)根据题意画出图形,证明△DMF≌△DNE,根据全等三角形的性质证明.

解答 解:(1)EN与MF相等,
证明:连接DE、DF,
∵△ABC和△DMN为等边三角形,
∴DM=DN,∠MDN=60°,
∵点D、E、F、分别为边AB,AC,BC的中点,
∴△DEF是等边三角形,
∴∠MDF=∠NDE,
在△DMF和△DNE中,
$\left\{\begin{array}{l}{DM=DN}\\{∠MDF=∠NDE}\\{DF=DE}\end{array}\right.$,
∴△DMF≌△DNE,
∴EN=MF;

(2)成立,
证明:连结DE,DF,EF.
∵△ABC是等边三角形,
∴AB=AC=BC.
∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.
∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.
在△DMF和△DNE中,
$\left\{\begin{array}{l}{DF=DE}\\{∠MDF=∠NDE}\\{DM=DN}\end{array}\right.$,
∴△DMF≌△DNE,
∴MF=NE;

(3)画出图形如图③所示:
MF与EN相等的结论仍然成立.
由(2)得,△DMF≌△DNE,
∴MF=NE.

点评 本题考查的是等边三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.如图,矩形ABCD的顶点B坐标为(5,4),直线y=2x-3分别交x轴、y轴于D、E点,若线段BC上有一点P,直线DE上有一点Q,△APQ是以AP为斜边的等腰直角三角形,则点P坐标为(5,1)或(5,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某商家为了给新产品作宜传,向全社会征集广告用语及商标图案,结果如图所示的商标(图中阴影部分)中标,求此商标图案的面积.(虚线左边为扇形,右边为长方形)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,矩形纸片ABCD中,AD=1,AB=2.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.当△AED的外接圆与BC相切于BC的中点N.则折痕FG的长为$\frac{17}{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A、B、D三点作⊙O,AE是⊙O的直径,连接DE.
(1)求证:AC是⊙O的切线;
(2)若cosC=$\frac{2}{3}$,AC=8,求⊙O直径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,点 O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则$\widehat{BC}$的长是(  )
A.$\frac{5}{8}$πB.$\frac{25}{4}$πC.$\frac{5}{4}$πD.$\frac{5}{2}$π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算结果等于a5的是(  )
A.a3+a2B.a3•a2C.(a32D.a10÷a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知AB为⊙O直径,过⊙O上一点C作⊙O的切线,交AB延长线于点E,作AD⊥CE,交EC延长线于D,交⊙O于点F,设∠ABC=α(0°<α<90°).
(1)求∠DAC(用含α的代数式表示);
(2)若cos∠CAD=$\frac{4}{5}$,AD=8,求AB的长;
(3)若α=60°,AB=10,求$\widehat{CF}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.给出下列命题:
①在直角三角形ABC中,已知两边长3和4,则第三边长为5;
②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;
④△ABC中,若a:b:c=1:$\sqrt{3}$:2,则这个三角形是直角三角形;
其中,正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案