精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2-4x+3与x轴交于两点A、B(A在B左侧),与y轴交于点C.
(1)对于任意实数m,点M(m,-3)是否在该抛物线上?请说明理由;
(2)求∠ABC的度数;
(3)若点P在抛物线上,且使得△PBC是以BC为直角边的直角三角形,试求出点P的坐标.
分析:(1)把点M的坐标代入解析式,运用反证法就可以证明出结论.
(2)由抛物线的解析式可以求出OC、OB的值,得出OC=OB,由△BOC是直角三角形,就可以求出∠ABC=45°.
(3)由BC是直角边,当∠PBC=90°时可以求出此时P的值,当∠PCB=90°时,可以求出P1C的解析式,根据抛物线与直线的交点坐标而求出此时P1的坐标.
解答:解:(1)假如点M(m,-3)是在该抛物线上,
∴-3=m2-4m+3,
∴m2-4m+6=0.
∴△=(-4)2-4×1×6=-8<0,
∴此方程无实数解,
∴对于任意实数m,点M(m,-3)是不在该抛物线上.

(2)当y=0时,x2-4x+3=0,
∴x1=1,x2=3,由于点A在点B的左侧,
∴A(1,0),B(3,0).
当x=0时,y=3,
∴C(0,3),
∴OB=OC=3.
∵∠COB=90°,
∴∠OBC=∠OCB=45°,
即∠ABC=45°.

(3)假设存在△PBC是以BC为直角边的直角三角形.当∠PBC=90°时,∵∠ABC=45°,
∴∠PBO=45°,
∴P(2,-1);
当∠PCB=90°时,设直线PC交x轴于Q,
∵∠ABC=45°,
∴∠BQC=45°,
∴OQ=OC=3,Q(-3,0),
设直线PC的解析式为y=kx+b,则,
3=b
0=-3k+b

k=1
b=3

∴直线的解析式为:y=x+3.
∵点P在抛物线上,
y=x+3
y=x2-4x+3

解得.x1=0(舍去),x2=5
∴当x=5时,y=8,此时P1(5,8)
∴存在点P(2,-1)或(5,8)使得△PBC是以BC为直角边的直角三角形.
点评:本题考查了二次函数图象上点的坐标特征,待定系数法求一次函数解析式的运用,根的判别式的运用,直角三角形的性质及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案