A. | $(3\sqrt{3}-π){r^2}$ | B. | $\frac{{(3\sqrt{3}-π)}}{3}{r^2}$ | C. | $\frac{π}{3}{r^2}$ | D. | πr2 |
分析 过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得AD=$\sqrt{3}$r.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.
解答 解:如图,当圆形纸片运动到与∠A的两边相切的位置时,
过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,
连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,AD=$\sqrt{3}$r.
则S△ADO1=$\frac{1}{2}$O1D•AD=$\frac{\sqrt{3}}{2}$r2,S四边形ADO1E=2S△ADO1=$\sqrt{3}$r2.
∵由题意,∠DO1E=120°,得S扇形O1DE=$\frac{π}{3}$r2,
∴圆形纸片不能接触到的部分的面积为3($\sqrt{3}$r2-$\frac{π}{3}$r2)=(3$\sqrt{3}$-π)r2.
故选:A.
点评 本题考查了轨迹,扇形面积的计算、等边三角形的性质和切线的性质,求出四边形ADO1E的面积与扇形O1DE的面积是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{(-1)^{2}}$=-2 | B. | a2+a5=a7 | C. | (a2)5=a10 | D. | $\sqrt{5}$×2$\sqrt{5}$=12$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com