精英家教网 > 初中数学 > 题目详情
如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=x2经过AD的中点M.
(1)填空:A点坐标为______,D点坐标为______;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.
【答案】分析:(1)已知抛物线y=x2经过AD的中点M,设M的坐标为(x,x2),由于∠BAD=120°,易知∠OAD=60°,因此=,解得x=,x=0(舍去).因此M点的坐标为(,1).也就能得出A点的坐标为(0,2),D点的坐标为(2,0).

(2)探究1:如果四边形AFEP是平行四边形,那么首要满足的条件是AP∥FE,由于∠FEO=60°,因此∠APO必为60°,此时△AOP中,∠APO=∠OAP=60°,因此△AOP是等边三角形,此时∠POD=∠PDO=30°,因此OP=PD=AP,即P为直角三角形OAD斜边上的中点,由题意可知:此时P,M重合,那么AP=AD,已知两菱形的位似比为2:1,因此EF=AD,也就是EF=AP,由此可得出当α=60°时,AP∥=EF,即四边形APEF是平行四边形.
探究2:四边形OPDQ不是规则的四边形,因此可将其面积分成△OPD和△OQD两部分进行计算,这两个三角形中都以OD为底,关键是求出两三角形的高,过P作PR⊥y轴于R,过Q作QT⊥x轴于T,那么OR和QT就是两三角形的高.先求OR的长,在直角三角形APR中,用AP的长和∠OAP的度数求出AR,进而根据OA的长可求出OR.求QT的长,可通过相似三角形△ORP和△OQT来求出,据此可根据四边形OPDQ的面积计算方法得出S,x的函数关系式.
解答:解:(1)由题意得
A(0,2),D(,0).

(2)探究1:当α=60°时,四边形AFEP是平行四边形.
理由如下:
∵两菱形的位似比为2﹕1,OA=2,OD=,菱形ABCD边长为4,∠BAO=60°
∴菱形EFGH的边长EF=AD=2,∠FEO=60°
∵在旋转过程中EF的长和∠FEO的大小始终不变
∴当射线OE旋转到经过M点时,P与M重合,AM=AP=2
△AOP为等边三角形,∠APO=∠AOP=60°
那么,∠APO=∠FEO=60°,则EF∥AP
又∵EF=AM=2
∴当旋转角度α=∠AOP=60°时,EF平行且等于AP
∴α=60°时,四边形AFEP为平行四边形.

探究2:过P点作PR⊥y轴于R,过Q作QT⊥x轴于T,
设TQ=y,
则:PR=AP•sin60°=
OR=OA-AR=2-AP•cos60°=2-x,
OT=OD-DT=-TQ•tan60°=2-y
∵它绕对称中心O旋转时∠POR=∠QOT
∴Rt△POR∽Rt△QOT


化简得:y=
∴S=S△OPD+S△ODQ=×2(2-x)+×2×
=2-x+
即S与x的函数关系式为:S=2-x+.(0<x<4)
点评:本题考查了菱形的性质、直角三角形的性质、图形的旋转变换、图形面积的求法以及二次函数的综合应用等知识点.综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=
13
x2经过AD的中点M.
(1)填空:A点坐标为
 
,D点坐标为
 

(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.
(1)在不添加辅助线时,写出其中的两对全等三角形;
(2)证明:BE=DG.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江西卷)数学(带解析) 题型:解答题

如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、DG.
(1)在不添加辅助线时,写出其中的两对全等三角形;
(2)证明:BE=DG.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江西卷)数学(解析版) 题型:解答题

如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、DG.

(1)在不添加辅助线时,写出其中的两对全等三角形;

(2)证明:BE=DG.

 

查看答案和解析>>

科目:初中数学 来源:2009年湖北省荆州市中考数学试卷(解析版) 题型:解答题

(2009•荆州)如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2:1),∠BAD=120°,对角线均在坐标轴上,抛物线y=x2经过AD的中点M.
(1)填空:A点坐标为______,D点坐标为______;
(2)操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q.
探究1:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
探究2:设AP=x,四边形OPDQ的面积为s,求s与x之间的函数关系式,并指出x的取值范围.

查看答案和解析>>

同步练习册答案