精英家教网 > 初中数学 > 题目详情
10.从一副扑克牌中任意抽取1张.
①这张牌是“A”;      
②这张牌是“红桃”;
③这张牌是“大王”;   
④这张牌是“红色的”.
将这些事件按发生的可能性从小到大顺序排列③①②④.(填序号,用“<”连接)

分析 首先分别求出一副扑克牌中含“A”、“红桃”、“大王”、“红色的”的张数各是多少,然后根据每张牌被抽到的机会相等,只要比较出哪个事件的可能结果最多,即可判断出这些事件发生的可能性的大小,并将这些事件按发生的可能性从小到大顺序排列即可.

解答 解:一副扑克牌中含“A”4张,“红桃”13张,“大王”1张,“红色的”26张,
∵1<4<13<26,
∴将这些事件按发生的可能性从小到大顺序排列:③①②④.
故答案为:③①②④.

点评 此题主要考查了随机事件发生的可能性的大小问题,要熟练掌握,解答此题的关键是判断出一副扑克牌中含“A”、“红桃”、“大王”、“红色鹅”的张数各是多少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.下列二次根式中是最简二次根式的是(  )
A.$\sqrt{4x}$B.$\sqrt{\frac{1}{x}}$C.$\sqrt{{x}^{2}+{y}^{2}-2xy}$D.$\sqrt{{x}^{2}-{y}^{2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图①,在梯形ABCD中,AB∥CD,∠B=90°,AB=6,CD=3,BC=$\sqrt{3}$.△EFG是边长为3的等边三角形,且与梯形ABCD位于直线AB同侧,点E与点A重合,EF与AB在同一直线上.△EFG以每秒1个单位的速度沿直线AB向右平移,当点E与点B重合时运动停止.设△EFG的运动时间为t(秒).
(1)当△EFG的边EG经过点D时,求t的值;
(2)在平移过程中,设△EFG与梯形ABCD重叠部分的面积为S,请直接写出S与t的函数关系式及其对应的自变量t的取值范围;
(3)如图②,当△EFG的平移运动停止后(此时点B与点E重合),将△EFG绕点F进行旋转,在旋转过程中,设EG所在直线与射线AD相交于点M,与射线FB相交于点N,当△AMN为等腰三角形时,求AN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连PC交⊙O于点D,若BD∥AC,则tan∠ACP的值是(  )
A.$\frac{3}{\sqrt{3}}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{3}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,△ABC中,AB=AC,BD是AC边上的高
①求作:AB边上的高CE(垂足为E)(保留作图痕迹,不必写出作图过程)
②求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,D为BC边的中点,连接DP.
(1)DP是⊙O的切线;
(2)若cosA=$\frac{3}{5}$,⊙O的半径为10,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点P为双曲线y=$\frac{k}{x}$上一点,PE⊥x轴于点E,PF⊥y轴于点F,直线y=-$\frac{1}{2}$x+2与y轴、x轴分别交于点A、B,与PF、PE分别交于点C、D,若AD•BC=10,则k=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案