精英家教网 > 初中数学 > 题目详情
(2009•中山)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的

【答案】分析:(1)本题要依靠辅助线的帮助.连接OA,OC,证明Rt△OFC≌Rt△OGC≌Rt△OGA后求得S△OAC=S△ABC,易证SOFCG=S△ABC
(2)本题有多种解法.连接OA,OB和OC,证明△AOC≌△COB≌△BOA,求出∠AOC以及∠DOE之间的关系即可.
解答:证明:(1)如图1,连接OA,OC;
因为点O是等边三角形ABC的外心,
所以Rt△OFC≌Rt△OGC≌Rt△OGA,
S四边形OFCG=2S△OFC=S△OAC
因为S△OAC=S△ABC
所以S四边形OFCG=S△ABC

(2)证法一:
连接OA,OB和OC,则
△AOC≌△COB≌△BOA,∠1=∠2;
设OD交BC于点F,OE交AC于点G,
∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,
∴∠3=∠5;
在△OAG和△OCF中

∴△OAG≌△OCF,
∴S△OAG=S△OCF
∴S△OAG+S△OGC=S△OCF+S△OGC
即S四边形OFCG=S△OAC=S△ABC

证法二:
设OD交BC于点F,OE交AC于点G;
作OH⊥BC,OK⊥AC,垂足分别为H、K;
在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,
∴∠HOK=360°-90°-90°-60°=120°,
即∠1+∠2=120度;
又∵∠GOF=∠2+∠3=120°,
∴∠1=∠3,
∵AC=BC,
∴OH=OK,
∴△OGK≌△OFH,
∴S四边形OFCG=S四边形OHCK=S△ABC
点评:本题涉及三角形的外接圆知识及全等三角形的判定,难度偏难.
练习册系列答案
相关习题

科目:初中数学 来源:2011年山东省中考数学模拟试卷(七)(解析版) 题型:解答题

(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源:2011年山东省济宁市曲阜市实验中学九年级数学第一次摸底试卷(解析版) 题型:解答题

(2009•中山)计算:|-|+-sin30°+(π+3)

查看答案和解析>>

科目:初中数学 来源:2011年山东省济宁市曲阜市实验中学九年级数学第一次摸底试卷(解析版) 题型:填空题

(2009•中山)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=    cm.

查看答案和解析>>

科目:初中数学 来源:2011年山东省潍坊市中考数学模拟试卷(一)(解析版) 题型:解答题

(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(39)(解析版) 题型:解答题

(2009•中山)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布折线统计图.

查看答案和解析>>

同步练习册答案