精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,ADBC,∠B=90°,AB=8cm,AD=24cm, BC=26cm.,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动。规定其中一个动点到达端点时,另一个动点也随之停止运动。从运动开始,使PQ=CD,需要经过多长时间?

【答案】(1)t=6s;(2)t=6s或t=7s

【解析】试题分析:根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24-t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t=(24-t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.

试题解析:(3)PD=CQ时,四边形PQCD是平行四边形;

24-x=3x

解得x=6s,

可知t=6s时,四边形PQCD是平行四边形,此时PQ=CD.

当四边形PQCD是等腰梯形时,PQ=CD.

设运动时间为t秒,则有AP=tcm,CQ=3tcm,

BQ=26-3t,

PMBCM,DNBCN,则有NC=BC-AD=26-24=2.

∵梯形PQCD为等腰梯形,

NC=QM=2,BM=(26-3t)+2=28-3t,

∴当AP=BM,即t=28-3t,解得t=7,

t=7时,四边形PQCD为等腰梯形.

综上所述t=6s7s时,PQ=CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(2,-3)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;

请解决以下问题:

如图,我们把满足AB=ADCB=CDABBC的四边形ABCD叫做“筝形”;

⑴写出筝形的两个性质(定义除外);

⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】只用下列图形不能镶嵌的是(  )
A.正三角形
B.长方形
C.正五边形
D.正六边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,ACB和DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求AEB的度数.

(2)拓展探究

如图2,ACB和DCE均为等腰直角三角形,ACB=DCE=90°,点A、D、E在同一直线上,CM为DCE中DE边上的高,连接BE.请求AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA = 75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB =∠ACB = 37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(2-4)位于( )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班学生在完成课题学习体质健康测试中的数据分析后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.

请你根据上面提供的信息回答下列问题:

1)扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人,训练后篮球定时定点投篮平均每个人的进球数是

2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.

查看答案和解析>>

同步练习册答案