【题目】在平面直角坐标系中,对于两个点,和图形,如果在图形上存在点,(,可以重合),使得,那么称点与点是图形的一对“倍点”.已知⊙O的半径为,点.
(1)①点到⊙O的最大值是_______,最小值是_______;
②在,,这两个点中,与点是⊙O的一对“倍点”的是_______;
(2)在直线上存在点与点是⊙O的一对“倍点”,求的取值范围;
(3)已知直线,与轴、轴分别交于点的,,若线段(含端点,)上所有点与点都是⊙O的一对“倍点”,直接写出的取值范围.
【答案】(1)①,,②;(2);(3)或
【解析】
(1)①根据点与圆的位置关系求解即可;
②先求出A、D两个点到⊙O的最大值与最小值,再根据“倍点”的定义求解即可;
(2)根据点B到⊙O的距离最值可得,点O到直线的最大距离OD=9,由和可推出即可求出答案;
(3)由线段MN到⊙O最大距离为ON,根据可得,即可得出b的取值范围.
解:(1)①点B到⊙O的最大值是
点B到⊙O的最小值是,
故答案为:4,2;
②A到⊙O的最大值6,最小值4;D到⊙O的最大值11,最小值9,
由(1)知,点B到⊙O的最大值是4,最小值是2,
因此,在⊙O上存在点P,Q,使得,则A与B是⊙O的一对“倍点”
故答案为:A;
(2)∵点到⊙O的最大值是,最小值是
,
∵O到直线的最大距离是,即,
∵,
,
;
(3)∵直线的 ,∴,
∵点到⊙O的最大值是,最小值是
,
∴,
∴或.
科目:初中数学 来源: 题型:
【题目】下表中给出,,三种手机通话的收费方式.
收费方式 | 月通话费/元 | 包时通话时间/ | 超时费/(元/) |
不限时 |
(1)设月通话时间为小时,则方案,,的收费金额,,都是的函数,请分别求出这三个函数解析式.
(2)填空:
若选择方式最省钱,则月通话时间的取值范围为______;
若选择方式最省钱,则月通话时间的取值范围为______;
若选择方式最省钱,则月通话时间的取值范围为______;
(3)小王、小张今年月份通话费均为元,但小王比小张通话时间长,求小王该月的通话时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.的顶点在格点上,仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:
(1)将边绕点顺时针旋转90°得到线段;
(2)画边的中点;
(3)连接并延长交于点,直接写出的值;
(4)在上画点,连接,使.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】松立商店准备从永波机械厂购进甲、乙两种零件进行销售,若甲种零件的进价是乙种零件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件多4件.
(1)求每个甲种零件,每个乙种零件的进价分别为多少元?
(2)松立商店购进甲、乙两种零件共102个,准备将零件批发给零售商.甲种零件的批发价是100元,乙种零件的批发价是130元,松立商店计划从零售商处的获利超过2284元,通过计算求出松立商店最多给零售商批发多少个甲种零件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调査的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题
(1)参加调査的学生共有 人,在扇形图中,表示“其他球类”的扇形圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2300名学生,则估计喜欢“足球”的学生共有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形DEBF是平行四边形;
(2)当DE=DF时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,,BC为的直径,D为任意一点,连接AD交BC于点F,EA⊥AD交DB的延长线于E,连接CD.
(1)求证:△ABE≌△ACD;
(2)填空:①当∠CAD的度数为 时,四边形ABDC是正方形;
②若四边形ABDC的面积为4,则AD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了调查学生对卫生健康知识,特别是疫情防控下的卫生常识的了解,现从九年级名学生中随机抽取了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整).
组别 | 成绩/分 | 人数 |
第组 | ||
第组 | ||
第组 | ||
第组 | ||
第组 |
请结合图表信息完成下列各题.
(1)表中a的值为_____,b的值为______;在扇形统计图中,第组所在扇形的圆心角度数为______°;
(2)若测试成绩不低于分为优秀,请你估计从该校九年级学生中随机抽查一个学生,成绩为优秀的概率.
(3)若测试成绩在分以上(含分)均为合格,其他为不合格,请你估计该校九年级学生中成绩不合格的有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,直线与x,y轴分别交于点A,B两点,直线y=2x+3m与轴分别交于两点,两直线交于点E,点P在射线CA上,点Q在射线AE上,分别连接交于点F,且.
(1)若点E的横坐标为,求的值
(2)当时,过点P作于点M,过点E作于点N,求证:
(3)在(1)的条件下,当时,过点P作交AB于点G,点K在射线CQ上,射线EK交直线于点L,射线交直线于点R,连接,当时,求K点LR到的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com