【题目】四边形ABCD中,AB∥ DC , BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.
图24-1-4-11
【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A , 并延长BA交⊙A于E , 连结DE.
∵AB∥CD , ∴弧 BC=弧DE.∴BC=DE=b.
∵BE为⊙A的直径,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的长为 .
【解析】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.
∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.
∵BE为⊙A的直径,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的长为 .
【考点精析】关于本题考查的勾股定理的概念和圆周角定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图①,大、中、小三个圆圈分别表示有理数集合、整数集合、自然数集合,把这三个圆圈如图②所示叠放在一起,形成大圆环A和小圆环B,则小圆环B表示的是负整数集合.请你把-20,0,3.14,-,5填入图②相应的位置中,并写出大圆环A所表示集合的名称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现( )
A.3次
B.4次
C.5次
D.6次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)-24×;
(2)-9+5×(-6)-(-4)2÷(-8);
(3)0.25×(-2)2-[4÷+1]+(-1)2018;
(4)-42÷-[].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.
(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;
(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图17-Z-10是由边长为1的小正方形组成的网格.
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由.
图17-Z-10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.
(1)若PE⊥BC,则①PE= cm,CE= (用含t的式子表示);
②求BQ的长;
(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在四边形ABCD中,BC=AD,AB=
求证:四边形ABCD是 四边形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇同学的思路写出证明过程;
(3)用文字叙述所证命题的逆命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,E分别是AC,AB上的两点,且 = = ,若△ADE的面积为1cm2 , 则四边形EBCD的面积为( )cm2 .
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com