【题目】某校一社团为了了解市区初中学生视力变化情况,从市区年入校的学生中随机抽取了部分学生连续三年的视力跟踪调查,并将收集到的数据进行整理,制成了折线统计图和扇形统计图.
(1)这次接受调查的学生有_____________人;
(2)扇形统计图中“”所对应的圆心角有多少度?
(3)现规定视力达到及以上为合格,若市区年入校的学生共计人,请你估计该届名学生的视力在年有多少名学生合格.
【答案】(1)400;(2)54°;(3)8400
【解析】
(1)利用折线图中2019年的视力为5.0以下人数120和扇形图中的百分比30%,即可求出总人数;
(2)先算出扇形统计图中“”所占的百分比,即可求出扇形统计图中“”所对应的圆心角度数;
(3)先算出合格人数所占的百分比,即可求出合格的学生人数.
解:120÷30%=400人,
故这次接受调查的学生有400人;
(2)1-30%-25%-20%-10%=15%,
360×15%=54°,
故扇形统计图中“”所对应的圆心角是54°;
(3)1-30%=70%,
12000×70%=8400人,
故该届名学生的视力在年有8400名学生合格.
科目:初中数学 来源: 题型:
【题目】出租车司机小王某天下午营运的路线全是在东西走向的大道上,小王从点出发,如果规定向东为正,向西为负,他这天下午的行驶记录如下:+5,-3,-8,-6,+10,-6,+12,-10(单位:千米)
(1)将最后一名乘客送到目的地时,小王距离出发点是多少千米?在点的哪个方向?
(2)若汽车耗油量为升/千米,小王送完最后一个乘客后回到出发点,共耗油多少升?(用含的代数式表示)
(3)出租车油箱内原有12升油,请问:当时,小王途中是否需要加油?若需要加油,至少需要加多少升油?如不需要,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为( )
A. B. 5 C. 4 D.
【答案】B
【解析】由旋转的性质可知,在图乙中,∠BCE1=15°,∠D1CE1=60°,AB=6,CD1=CD=7,
∴∠D1CB=60°-15°=45°,
又∵∠ACB=90°,
∴CO平分∠ACB,
又∵AC=BC,
∴CO⊥AB,且CO=AO=BO=AB=3,
∴D1O=CD1-CO=7-3=4,∠AOD1=90°,
∴在Rt△AOD1中,AD1=.
故选B.
点睛:本题解题的关键是由旋转的性质证明:∠D1CB=45°,从而得到CD1平分∠ACB,结合等腰三角形的“三线合一”证得∠AOD1=90°,并求得AO=3,OD1=4;这样问题就变得很简单了.
【题型】单选题
【结束】
10
【题目】我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有( )个.
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③当x=4时,甲、乙两队所挖管道长度相同;
④甲队比乙队提前2天完成任务.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用同样规格的黑白两种颜色的正方形,按如图的方式拼图,请根据图中的信息完成下列的问题.
(1)在图②中用了 块黑色正方形,在图③中用了 块黑色正方形;
(2)按如图的规律继续铺下去,那么第个图形要用 块黑色正方形;
(3)如果有足够多的白色正方形,能不能恰好用完90块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC.AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题背景】
如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
【类比研究】
如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)连结AE,若AF=DF,AB=7,求△DEF的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在圆O中,AO、BO是圆O的半径,点C在劣弧上,,,,联结AB.
如图1,求证:AB平分;
点M在弦AC的延长线上,联结BM,如果是直角三角形,请你在如图2中画出点M的位置并求CM的长;
如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,的面积为y,求y与x的函数关系式,并写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校实验课程改革,初三年级设罝了A,B,C,D四门不同的拓展性课程(每位学生只选修其中一门,所有学生都有一门选修课程),学校摸底调査了初三学生的选课意向,并将调查结果绘制成两个不完整的统计图,问该校初三年级共有多少学生?其中要选修B、C课程的各有多少学生?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com