精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式.
(2)试在(1)中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标.
(3)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(4)设从出发起,运动了t秒.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.

【答案】分析:(1)根据待定系数法就可以求出直线OC的解析式及经过O、A、C三点的抛物线的解析式.
(2)点D就是抛物线与CB的另一个交点.在抛物线的解析式中令y=6,就可以求出D的坐标.
(3)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况.
(4)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验.
解答:解:(1)∵O、C两点的坐标分别为O(0,0),C(8,6),
设OC的解析式为y=kx+b,将两点坐标代入得:k=,b=0,
∴y=x(2分)
∵A,O是x轴上两点,
∴可设抛物线的解析式为y=a(x-0)(x-18)
再将C(8,6)代入得:a=-
∴y=-x2+x.(5分)

(2)D(10,6).

(3)当Q在OC上运动时,可设Q(m,m),
依题意有:m2+(m)2=(2t)2
∴m=t,
∴Q(t,t),(0≤t≤5)
当Q在CB上时,Q点所走过的路程为2t,
∵OC=10,
∴CQ=2t-10,
∴Q点的横坐标为2t-10+8=2t-2,
∴Q(2t-2,6),(5<t≤10).(11分)

(4)∵梯形OABC的周长为:10+18+10+6=44,当Q点OC上时,P运动的路程为t,则Q运动的路程为(22-t),
△OPQ中,OP边上的高为:(22-t)×,S△OPQ=t(22-t)×
梯形OABC的面积S=(18+10)×6=84,
∵直线PQ把梯形的面积也分成相等的两部分,即S△OPQ=S,
依题意有:t(22-t)×=84×
整理得:t2-22t+140=0
∵△=222-4×140<0,
∴这样的t不存在,
当Q在BC上时,Q走过的路程为22-t,
∴CQ的长为:22-t-10=12-t,
∴梯形OCQP的面积=×6×(22-t-10+t)=36≠84×
∴这样的t值不存在.
综上所述,不存在这样的t值,使得P,Q两点同时平分梯形的周长和面积.(16分)
点评:本题主要考查了待定系数法求函数解析式,本题是函数与梯形的性质相结合的综合题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案