精英家教网 > 初中数学 > 题目详情

已知:关于x的方程

(1)求证:无论k为何实数,方程总有实数根;

(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.

 

【答案】

解:(1)证明:①当k=0时,方程是一元一次方程,有实数根。

②当k≠0时,方程是一元二次方程,

∴一元二次方程有两实数根。

综上所述,无论k为何实数,方程总有实数根。

(2)∵此方程有两个实数根x1,x2

∵|x1﹣x2|=2,∴(x1﹣x22=4,即(x1+x22﹣4x1x2=4。

,解得k=1或

【解析】

试题分析:(1)确定判别式的范围即可得出结论。

 (2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意可得出方程,解出即可。 

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案