精英家教网 > 初中数学 > 题目详情
小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为
5
2
(如图(3)),试求EG的长度.
精英家教网
分析:(1)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,利用正方形ABCD,AB=AD,∠ABM=∠BAD=∠ADN=90°求证△ABM≌△ADN即可.
(2)过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,利用在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°求证△ABM∽△ADN.再根据其对应边成比例,将已知数值代入即可.
(3)过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A顺时针旋转90°到△APB.从而求证△APM≌△ANM,得出PM=NM.再设DN=x,根据勾股定理列方程即可求解.
解答:解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,
∴AM=HF,AN=BC,
在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN,
在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN
∴△ABM≌△ADN
∴AM=AN,即EC=FH
精英家教网

(2)结论:EG:FH=3:2
证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,
∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,
∵EG⊥FH,
∴∠NAM=90°,
∴∠BAM=∠DAN.
∴△ABM∽△ADN.
AM
AN
=
AB
AD

∵AB=2,BC=AD=3,
EC
FH
=
3
2


(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,
AB=1,AM=FH=
5
2

∴在Rt△ABM中,BM=
1
2

将△AND绕点A顺时针旋转90°到△APB.
∵EG与FH的夹角为45°,
∴∠MAN=45°,
∴∠DAN+∠MAB=45°,即∠PAM=∠MAN=45°,
从而△APM≌△ANM,
∴PM=NM.
设DN=x,则NC=1-x,MN=PM=
1
2
+x

在Rt△CMN中,(
1
2
+x)2=
1
4
+(1-x)2
解得x=
1
3

EG=AN=
1+x2
=
10
3
点评:此题主要考查学生对相似三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识点的理解和掌握,综合性较强,难度较大,是一道难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为数学公式(如图(3)),试求EG的长度.

查看答案和解析>>

科目:初中数学 来源:《第4章 相似三角形》2010年练习题(解析版) 题型:解答题

小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:
方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…
(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.

查看答案和解析>>

同步练习册答案