分析 根据旋转的性质得到BC≌△A1BC1,A1B=AB=4,所以△A1BA是等腰三角形,∠A1BA=30°,然后得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1-S△ABC=S△A1BA,最终得到阴影部分的面积.
解答 解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,
∴△ABC≌△A1BC1,
∴A1B=AB=4,
∴△A1BA是等腰三角形,∠A1BA=30°,
∴S△A1BA=$\frac{1}{2}$×4×2=4,
又∵S阴影=S△A1BA+S△A1BC1-S△ABC,
S△A1BC1=S△ABC,
∴S阴影=S△A1BA=4.
故答案为:4.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.运用面积的和差解决不规则图形的面积是解决此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{33}{100}$ | B. | $\frac{34}{100}$ | C. | $\frac{3}{10}$ | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 一组对边相等,另一组对边平行的四边形是平行四边形 | |
B. | 对角线互相垂直的四边形是菱形 | |
C. | 对角线相等的四边形是矩形 | |
D. | 对角线互相垂直平分且相等的四边形是正方形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com