精英家教网 > 初中数学 > 题目详情
(2012•镇江)如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.
(1)求证:FC是⊙O的切线;
(2)若⊙O的半径为5,cos∠ECF=
25
,求弦AC的长.
分析:(1)连接OC.欲证FC是⊙O的切线,只需证明FC⊥OC即可;
(2)连接BC.利用(1)中的∠AED=∠FEC=∠ECF、圆周角定理求得BC=AB•cos∠ABC=AB•cos∠ECF=10×
2
5
=4;然后在直角三角形ABC中利用勾股定理求得AC的长度即可.
解答:(1)证明:连接OC.
∵FC=FE(已知),
∴∠FCE=∠FEC(等边对等角);
又∵∠AED=∠FEC(对顶角相等),
∴∠FCE=∠AED(等量代换);
∵OA=OC,
∴∠OAC=∠OCA(等边对等角);
∴∠FCE+∠OCA=∠AED+∠OAC;
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCE+∠OCA=90°,即FC⊥OC,
∴FC是⊙O的切线;

(2)解:连接BC.
∵AB是⊙O的直径,⊙O的半径为5,
∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,
∴∠A+∠ABC=90°.
∵DF⊥AB,
∴∠A+∠AED=90°,
∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;
由(1)知,∠AED=∠FEC=∠ECF,
∴BC=AB•cos∠ABC=AB•cos∠ECF=10×
2
5
=4,
∴AC=
AB2-BC2
=
102-42
=2
21
点评:本题考查了切线的判定与性质、勾股定理、圆周角定理以及解直角三角形.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•镇江)如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)如图,E是?ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,
CE
AB
=
1
3
,则CF的长为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)如图,在平面直角坐标系xOy中,直线AB经过点A(-4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为
7
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江)如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=
4
x
在第一象限内交于点C(1,m).
(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y=
4
x
交于点P、Q,求△APQ的面积.

查看答案和解析>>

同步练习册答案