精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知:在四边形ABCD中,AD=DC=1,∠DCB=∠DAB=90°,BD=2,则四边形ABCD面积为
 
分析:要求四边形ABCD的面积,求△ABD和△CBD的面积即可,先求证△ABD≌△CBD,则四边形ABCD的面积为2S△CBD
解答:解:在直角△ABD中,AB=
BD2-AD2
=
3

在直角△CBD中,BC=
BD2-CD2
=
3

∴AB=DB,
∴在△ABD和△CBD中,
CD=AD
AB=CB
DB=DB

∴△ABD≌△CBD,
∴四边形ABCD的面积为2S△CBD=2×
1
2
×AD×AB=
3

故答案为:
3
点评:本题考查了勾股定理的运用,考查了直角三角形面积的计算,本题中求证△ABD≌△CBD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)试探究,四边形BECF是什么特殊的四边形?
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在四边形ABCD中,∠A=∠C,∠B+∠C=180°,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,
(1)求证:AC平分∠BAD;
(2)若AE=3BE=9,求AD的长;
(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD=4cm,∠ABC=∠DCB,求BC的长.

查看答案和解析>>

同步练习册答案