精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
(1)∵抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),
9a-3b+6=0
4a+2b+6=0

解得:
a=-1
b=-1

∴抛物线的解析式为y=-x2-x+6.

(2)∵把x=0代入y=-x2-x+6,得y=6.
∴点C的坐标为(0,6).
设经过点B和点C的直线的解析式为y=mx+n,则
2m+n=0
n=6

解得
m=-3
n=6

∴经过点B和点C的直线的解析式为:y=-3x+6.
∵点E在直线y=h上,
∴点E的坐标为(0,h).
∴OE=h.
∵点D在直线y=h上,
∴点D的纵坐标为h.
把y=h代入y=-3x+6,得h=-3x+6.
解得x=
6-h
3

∴点D的坐标为(
6-h
3
,h).
∴DE=
6-h
3

∴S△BDE=
1
2
•OE•DE=
1
2
•h•
6-h
3
=-
1
6
(h-3)2+
3
2

∵-
1
6
<0且0<h<6,
∴当h=3时,△BDE的面积最大,最大面积是
3
2


(3)存在符合题意的直线y=h.
设经过点A和点C的直线的解析式为y=kx+p,则
-3k+p=0
p=6

解得
k=2
p=6

故经过点A和点C的直线的解析式为y=2x+6.
把y=h代入y=2x+6,得h=2x+6.
解得x=
h-6
2

∴点F的坐标为(
h-6
2
,h).
在△OFM中,OM=2,OF=
(
h-6
2
)2+h2
,MF=
(
h-6
2
+2)
2
+h2

①若OF=OM,则
(
h-6
2
)
2
+h2
=2,
整理,得5h2-12h+20=0.
∵△=(-12)2-4×5×20=-256<0,
∴此方程无解.
∴OF=OM不成立.
②若OF=MF,则
(
h-6
2
)
2
+h2
=
(
h-6
2
+2)
2
+h2

解得h=4.
把y=h=4代入y=-x2-x+6,得-x2-x+6=4,
解得x1=-2,x2=1.
∵点G在第二象限,
∴点G的坐标为(-2,4).
③若MF=OM,则
(
h-6
2
+2)
2
+h2
=2,
解得h1=2,h2=-
6
5
(不合题意,舍去).
把y=h1=2代入y=-x2-x+6,得-x2-x+6=2.
解得x1=
-1-
17
2
,x2=
-1+
17
2

∵点G在第二象限,
∴点G的坐标为(
-1-
17
2
,2).
综上所述,存在这样的直线y=2或y=4,使△OMF是等腰三角形,当h=4时,点G的坐标为(-2,4);当h=2时,点G的坐标为(
-1-
17
2
,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

函数y=-
3
16
x2+3的图象与x轴正半轴交于点A,与y轴交于点B,过点A、B分别作y轴、x轴的平行线交直线y=kx于点M、N.
(1)用k表示S△OBN:S△MAO的值.
(2)当S△OBN=
1
4
S△MAO时,求图象过点M、N、B的二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为10.0m(含拱圈厚度和拉杆长度),横向分跨CD为40.0m.
(1)试在示意图(图(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;
(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+5与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(1,7),点D的横坐标为5.
(1)求直线与抛物线的解析式;
(2)将此抛物线沿对称轴向下平移几个单位,抛物线与直线AB只有一个交点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x1234
价格y(元/kg)22.22.42.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
1
20
x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
1
4
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=-
1
5
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm∕s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经几秒钟,使△PBQ的面积等于8cm2?在移动过程中,△PBQ的最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
9
2
).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EFAC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

同步练习册答案