【题目】在等腰△ABC中,AB=AC,BC=4,⊙O是△ABC的外接圆,若⊙O的半径为4,则△ABC的面积为_____.
科目:初中数学 来源: 题型:
【题目】如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间具有函数关系,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15米时,需要多少飞行时间?
(2)在飞行过程中,小球飞行高度何时达到最大?最大高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点,与轴负半轴交于点,与轴交于点,且.
(1)求抛物线的解析式;
(2)点在轴上,且,求点的坐标;
(3)点在抛物线上,点在抛物线的对称轴上,是否存在以点,,,为顶点的四边形是平行四边形?若存在。求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF
∵DE是⊙O的直径,∴∠DBE=90°.
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABGC内接于⊙O,GA平分∠BGC.
(1)求证:AB=AC;
(2)如图2,过点A作AD∥BG交CG于点D,连接BD交线段AG于点W,若∠BAG+∠CAD=∠AWB,求证:BD=BG;
(3)在(2)的条件下,若CD=5,BD=16,求WG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.
(1)请直接写出点C的坐标及k的值;
(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;
(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,tan∠CAB=,AD=AB,AH⊥BD于点H,连接CD交AH于点E,连接BE,BE=,则BD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重台时,BH与AE的位置关系为______,BH与AE的数量关系为______;
问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;
拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com