精英家教网 > 初中数学 > 题目详情
3.化简:$\frac{3}{x-1}$-$\frac{1}{x+1}$-$\frac{{x}^{2}-3}{1-{x}^{2}}$-1,再从-1,0,1这三个数中选一个合适的数求值.

分析 原式通分并利用同分母分式的加减法法则计算,约分得到最简结果,把x=0代入计算即可求出值.

解答 解:$\frac{3}{x-1}$-$\frac{1}{x+1}$-$\frac{{x}^{2}-3}{1-{x}^{2}}$-1
=$\frac{3(x+1)}{(x+1)(x-1)}$-$\frac{x-1}{(x+1)(x-1)}$+$\frac{{x}^{2}-3}{(x+1)(x-1)}$-$\frac{{x}^{2}-1}{(x+1)(x-1)}$
=$\frac{3x+3-x+1+{x}^{2}-3-{x}^{2}+1}{(x+1)(x-1)}$
=$\frac{2(x+1)}{(x+1)(x-1)}$
=$\frac{2}{x-1}$,
当x=0时,原式=$\frac{2}{0-1}$=-2.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.x的3倍与8的和比y的2倍小:3x+8<2y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,D是AB边上的中点,E是AC上一点,DF∥BE,EF∥AB,且DF、EF相交于F.
(1)求证:AE、DF互相平分;
(2)当EA=EB时,试判断四边形ADEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,用方向和距离表示火车站相对于仓库的位置是东偏北20°方向,距离仓库50km.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不超过8 000元,那么该商店至多购进A种纪念品几件?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)如图1,连接OD交AC于点F,cos∠DAB=$\frac{3}{5}$,求$\frac{AF}{FC}$的值.
(2)如图2,连接OD,$\frac{CD}{AD}=\frac{3}{4}$,求tan∠ADO的值.
(3)如图3,连接BD,若cos∠CAD=$\frac{4}{5}$,求tan∠BDC的值.
(4)如图4,连接OD交AC于F,DC、AB的延长线交于点G.若$\frac{OF}{DF}=\frac{2}{3}$,求tan∠G的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图(1),已知抛物线y=ax2+bx+5中与x轴交于A、B(点A在点B的左侧)两点.与y轴交于点C,已知点A的横坐标为-5,且点D(-2,3)在此抛物线的对称轴上.
(1)求a、b的值;
(2)若在直线AC上方的抛物线上有一点M,当点M到x轴的距离与M到直线AC的距离之比为$\frac{4\sqrt{2}}{3}$时,求点M的坐标;
(3)在(2)的条件下,y轴上是否存在一点P,使得|PD-PM|值最大,如果存在,求此时点P的坐标及|PD-PM|的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点D在△ABC的AB边上,且∠ACD=∠A.
(1)作∠CDE=∠ACD,交BC于点E(尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,判断∠CDE与∠BDE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.多项式2+4x2y-$\frac{1}{3}$x2y3是2,4x2y,-$\frac{1}{3}$x2y3三项的和,其中次数最高项的系数是-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案