精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1.且A、C两点的坐标分别为A(-1,0),C(0,-3).
(1)求抛物线y=ax2+bx+c的解析式;
(2)在对称轴上是否存在一个点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)∵A、B两点关于x=1对称,且A(-1,0),
∴B点坐标为(3,0),
根据题意得:
0=9a+3b+c
0=a-b+c
-3=c

解得a=1,b=-2,c=-3.
∴抛物线的解析式为y=x2-2x-3;

(2)存在一个点P,使△PAC的周长最小.
A点关于x=1对称点B的坐标为(3,0),
设直线BC的解析式为y=kx+b
3k+b=0
b=-3

∴k=1,b=-3,
即BC的解析式为y=x-3.
当x=1时,y=-2,
∴P点坐标为(1,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙C经过原点且与两坐标分别交于点A与点B,点A的坐标为(0,6),点M是圆上弧BO的中点,且∠BMO=120°.
①求弧BO的度数;
②求⊙C的半径;
③求过点B、M、O的二次函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一只排球从P点打过球网MN,已知该排球飞行距离x(米)与其距地面高度y(米)之间的关系式为y=-
1
12
x2+
2
3
x+
3
2
(如图).已知球网MN距原点5米,运动员(用线段AB表示)准备跳起扣球.已知该运动员扣球的最大高度为
9
4
米,设他扣球的起跳点A的横坐标为k,因球的高度高于他扣球的最大高度而导致扣球失败,则k的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在平面直角坐标系中,以BC为直径的⊙M交x轴正半轴于点A、B,交y轴正半轴于点E、F,过点C作CD垂直y轴,垂足为点D,连接AM并延长交⊙M于点P,连接PE.
(1)求证:∠FAO=∠EAM;
(2)若二次函数y=-x2+px+q的图象经过点B、C、E,且以C为顶点,当点B的横坐标等于2时,四边形OECB的面积是
11
4
,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=
1
2
,CO=BO,AB=3,求这条抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-(m-2)x+m的图象经过(-1,15),
(1)求m的值;
(2)设此二次函数的图象与x轴的交点为A、B,图象上的点C使△ABC的面积等于1,求C点的坐标;
(3)当△ABC的面积大于3时,求点C横坐标的取值范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y1=2x2+
1
4
的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+
1
4
和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+
1
4
,求a,b,c的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场以每个40元的进价购进一批篮球,如果以每个50元销售,那么每月可售出200个.根据销售经验,售价每提高1元,销售量相应减少10个.
(1)假设销售单价提高x元,那么销售1个篮球所获得的利润是______元;这种篮球每月的销售量是______个;(用含x的代数式表示)
(2)篮球的售价定为多少元时,每月销售这种篮球的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为______;
(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案