精英家教网 > 初中数学 > 题目详情
如图,一艘轮船位于灯塔P的北偏东60°方向,距离灯塔60海里的A处,它沿正南方向航精英家教网行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.
(1)求轮船所在的B处与灯塔P之间的距离BP;
(2)求轮船航行的距离AB.
(注意:本题中的计算过程和结果均保留根号)
分析:(1)过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB;
(2)利用直角三角形中30°所对的边等于斜边的一半求出AC,再利用等腰直角三角形的知识求出BC的长,即可得出AB的长.
解答:精英家教网解:(1)作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45° AP=60(海里).
在Rt△APC中,cos∠APC=
PC
PA

∴PC=PA•cos∠APC=30
3
(海里).
在Rt△PCB中,cos∠BPC=
PC
PB

∴PB=
PC
cos∠BPC
=
30
3
cos45°
=30
6
(海里).
答:此时轮船所在的B处与灯塔P的距离是30
6
海里.

(2)∵PA=60(海里),∠APC=30°,∠ACP=90°,
∴AC=30海里,
∵∠CPB=45°,∠ACP=90°,
∴∠CBP=45°,
∴PC=BC=30
3
海里,
∴AB=AC+BC=30+30
3
=30(1+
3
)海里,
答:轮船航行的距离AB为30(1+
3
)海里.
点评:此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘轮船位于灯塔P的北偏东45°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处.
(1)求BP距离;
(2)求AB的距离.

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》常考题集(18):1.5 解直角三角形的应用(解析版) 题型:解答题

如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:第21章《解直角三角形》常考题集(17):21.5 应用举例(解析版) 题型:解答题

如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).

查看答案和解析>>

同步练习册答案