精英家教网 > 初中数学 > 题目详情
9.在平面直角坐标系中,已知点A(2a-b,-8)与点B(-2,a+3b)关于原点对称,则a=2,b=2.

分析 利用关于原点对称的点的特点建立方程组即可.

解答 解:∵点A(2a-b,-8)与点B(-2,a+3b)关于原点对称,
∴2a-b=2,a+3b=8,
∴a=2,b=2,
故答案为2,2.

点评 此题是关于原点对称的点的坐标,主要考查坐标系中点的对称点的特征,熟记对称点的特征是解本题的关键,是一道简单题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.几位同学尝试用矩形纸条ABCD(如图1)折出常见的中心对称图形.

(1)如图2,小明将矩形纸条先对折,使AB和DC重合,展开后得折痕EF,再折出四边形ABEF和CDEF的对角线,它们的对角线分别相交于点G,H,最后将纸片展平,则四边形EGFH的形状一定是菱形.
(2)如图3,小华将矩形纸片沿EF翻折,使点C,D分别落在矩形外部的点C′,D′处,FC′与AD交于点G,延长D′E交BC于点H,求证:四边形EGFH是菱形.
(3)如图4,小美将矩形纸条两端向中间翻折,使得点A,C落在矩形内部的点A′,C′处,点B,D落在矩形外部的点B′,D′处,折痕分别为EF,GH,且点H,C′,A′,F在同一条直线上,试判断四边形EFGH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:
((2x+y)2-y(y+4x)-8xy)÷2x,其中x=$\frac{1}{2}$,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.把方程$\frac{1}{3}$x2-x-5=0,化成(x+m)2=n的形式得(  )
A.(x-$\frac{3}{2}$)2=$\frac{29}{4}$B.(x-$\frac{3}{2}$)2=$\frac{27}{2}$C.(x-$\frac{3}{2}$)2=$\frac{51}{4}$D.(x-$\frac{3}{2}$)2=$\frac{69}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算正确的是(  )
A.$\sqrt{4+9}=\sqrt{4}+\sqrt{9}$B.2$\sqrt{2}-\sqrt{2}$=2C.$\sqrt{2}×\sqrt{3}=\sqrt{5}$D.$\frac{{\sqrt{21}}}{{\sqrt{3}}}=\sqrt{\frac{21}{3}}=\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,AB∥CD,AF平分∠BAC,且交CD于点E,若∠CEA=27°,则∠DCG的度数为 (  )
A.13.5°B.27°C.44°D.54°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$-\sqrt{7}÷3\sqrt{\frac{14}{15}}×\frac{3}{2}\sqrt{2\frac{1}{2}}$
(2)$2\sqrt{x{y^3}}÷({-\frac{1}{2}\sqrt{{x^3}{y^2}}})$
(3)$\sqrt{4\frac{4}{5}}•3\sqrt{5}÷(-\frac{3}{4}\sqrt{10})$
(4)$\sqrt{a{b^3}}÷({-3\sqrt{\frac{b}{2a}}})×({-3\sqrt{2a}})$
(5)$\sqrt{24}+\sqrt{\frac{2}{3}}-3\sqrt{6}$
(6)$\sqrt{30}×\frac{3}{2}\sqrt{2\frac{2}{3}}÷2\sqrt{2\frac{1}{2}}$
(7)${({\sqrt{5}-2})^2}+({\sqrt{5}-3})({\sqrt{5}+3})$
(8)$(\frac{1}{3}\sqrt{27}-\sqrt{24}-3\sqrt{\frac{2}{3}})•\sqrt{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.看图填空:已知,如图,BC∥EF,AD=BE,BC=EF.试说明△ABC≌△DEF
解:∵AD=BE
∴AD+DB=BE+DB;  即:AB=DE
∵BC∥EF
∴∠ABC=∠E(两直线平行,同位角相等)
在△ABC和△DEF中,BC=EF,∠ABC=∠E,AB=DE,
∴△ABC≌△DEF (SAS).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为(  )
A.13B.21C.18D.3

查看答案和解析>>

同步练习册答案