精英家教网 > 初中数学 > 题目详情
已知,凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,又关于x的方程:
x2+2xsinA1+sinA2=0
x2+2xsinA2+sinA3=0
x2+2xsinA3+sinA1=0
均有实根,求这凸4n+2边形各内角的度数.
∵各内角只能是30°,60°,90°,120°,150°,
∴正弦值只能取
1
2
3
2
,1,
若sinA1=
1
2

∵sinA2
1
2
,sinA3
1
2

∴方程①的判别式△1=4(sin2A1-sinA2)≤4(
1
4
-
1
2
)<0,
方程①无实根,与已知矛盾,
故sinA1
1
2

同理sinA2
1
2
,sinA3
1
2

若sinA1=
3
2
,则sinA2
3
2
,sinA3
3
2

∴方程①的判别式△1=4(sin2A1-sinA2)=4•(
3
4
-
3
2
)<0,方程①无实根,与已知矛盾,
∴sinA1
3
2
,同理sinA2
3
2
,sinA3
3
2

综上,sinA1=1,A1=90°,
这样,其余4n-1个内角之和为4n×180°-3×90°=720°•n-270°,这些角均不大于150°,
∴720°•n-270°≤(4n-1)•150°,
故n≤1,又n为正整数,
∴n=1,即多边形为凸六边形,且A4+A5+A6=4×180°-3×90°=450°,
∵A4,A5,A6≤150°,
∴A4=A5=A6=150°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,又关于x的方程:
x2+2xsinA1+sinA2=0
x2+2xsinA2+sinA3=0
x2+2xsinA3+sinA1=0
均有实根,求这凸4n+2边形各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

 已知,凸4n+2边形A1A2…A4n+2n是非零自然数)各内角都是30°的整数倍,

又关于x的方程

②③

 
     

  均有实根,求这凸4n+2边形各内角的度数.

   

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,又关于x的方程:
数学公式均有实根,求这凸4n+2边形各内角的度数.

查看答案和解析>>

科目:初中数学 来源:2006年江苏省南通市启东中学高一提前招生考试试卷(解析版) 题型:解答题

已知,凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,又关于x的方程:
均有实根,求这凸4n+2边形各内角的度数.

查看答案和解析>>

同步练习册答案