精英家教网 > 初中数学 > 题目详情
11.将抛物线y=x2+2x-4向左平移2个单位,又向上平移3个单位,最后绕顶点旋转180°.
①求变换后新抛物线对应的函数解析式;
②若这个新抛物线的顶点横纵坐标恰为x的整系数方程x2-(4m+n)x+3m2-2n=0的两根.求m、n的值.

分析 (1)用顶点公式或者配方的办法,求出抛物线的顶点坐标,根据抛物线的平移规律,写出平移后的抛物线的解析式,抛物线绕顶点旋转180°后,改变的只是开口方向,写出旋转后抛物线的解析式.
(2)首先求出新抛物线的解析式,再根据根与系数的关系,得到关于m、n的方程组,求出m、n的值.

解答 (1)解:∵y=x2+2x-4=(x+1)2-5,
∴抛物线y=x2+2x-4的顶点坐标为(-1,-5),
因抛物线y=x2+2x-4向左平移2个单位,又向上平移3个单位,
所以其平移后的函数解析式为y=(x+1+2)2-5+3=(x+3)2-2.
抛物线绕顶点旋转180°后的函数解析式为y=-(x+3)2-2.
(2)解:∵抛物线y=-(x+3)2-2的顶点为(-3,-2),
由于抛物线的顶点横纵坐标恰为x的整系数方程x2-(4m+n)x+3m2-2n=0的两根,
∴$\left\{\begin{array}{l}{4m+n=-5}\\{3{m}^{2}-2n=6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{m}_{1}=\frac{2}{3}}\\{{n}_{1}=-\frac{23}{3}}\end{array}\right.,\left\{\begin{array}{l}{{m}_{2}=-2}\\{{n}_{2}=3}\end{array}\right.$.

点评 本题考查了抛物线的顶点坐标、平移规律、旋转规律,考查了一元二次方程的根与系数的关系以及一元二次方程的解法.
(1)求抛物线的顶点可用配方法,也可以用公式:x=-$\frac{b}{2a},y=\frac{4ac-{b}^{2}}{4a}$;
(2)抛物线的平移规律:左加右减,上加下减.即抛物线写成顶点式y=a(x-h)2+k以后,抛物线向左或右平移,在括号内加减,向上或下平移,在k后加或减.
(3)若一元二次方程ax2+bx+c=0的两个根为x1、x2,则x1+x2=-$\frac{b}{2a}$,x1•x2=$\frac{c}{a}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.64的平方根是8B.2的平方根是2
C.0没有平方根D.16的平方根是4和-4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.要使二次根式$\sqrt{4-x}$有意义,自变量x的取值范围是(  )
A.x>4B.x<4C.x≥4D.x≤4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各组线段中,能构成直角三角形的是(  )
A.1,2,3B.$\sqrt{2}$,$\sqrt{6}$,$\sqrt{3}$C.1,2,$\sqrt{3}$D.2,3,5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,小明从家里骑电动车去体育馆,中途因买饮料停止了一分钟,之后又骑行了1.8千米到达了体育馆.若小明骑行的速度始终不变,从出发开始计时,剩余的路程S(千米)与t时间(分钟)的图象如图所示,则图中a等于(  )
A.18B.3C.36D.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知2x-y=10,则4x-2y+1的值为(  )
A.10B.21C.-10D.-21

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知点A(-1,0),点B(0,2),点C在x轴上,三角形ABC的面积为4,则点C的坐标为(3,0)或(-5,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在下列四幅图中,哪几幅图是可以经过平移变换得来的①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,四边形ABCD内接于⊙O,F是$\widehat{CD}$上一点,且$\widehat{DF}$=$\widehat{BC}$,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为(  )
A.45°B.50°C.55°D.60°

查看答案和解析>>

同步练习册答案