分析 (1)连接AC,由勾股定理可求出OC的长,进而得出C点坐标,同理,由切线的性质及勾股定理即可得出OB的长,进而求出B点坐标,再用待定系数法即可求出过BC两点的直线解析式;
(2)过G点作x轴垂线,垂足为H,连接AG,设G(x0,y0),在Rt△ACG中利用锐角三角函数的定义可求出CG的长,
由勾股定理可得出BC的长,由OC∥GH可得出$\frac{OH}{BO}=\frac{CG}{BC}$,进而可求出G点坐标;
(3)假设△AEF为直角三角形,由AE=AF可判断出△AEF为等腰三角形,可得出∠EAF=90°,过A作AM⊥BC于M,
在Rt△AEF中利用勾股定理可求出EF的长度,证出△BOC∽△BMA,由相似三角形的性质可得出A点坐标;当圆心A在点B的左侧时,设圆心为A′,过A′作A′M′⊥BC于M′,可得△A′M′B′≌△AMB,由全等三角形的性质可得出A′点的坐标.
解答 解:(1)连接AC,则OC=2,故点C的坐标为(0,2),
∵BC为⊙O的切线,
∴AC⊥BC,
在Rt△ABC中,(OB+OA)2=BC2+AC2,即(OB+1)2=BC2+5①,
在Rt△OBC中,BC2=OB2+OC2,即BC2=OB2+4②,
①②联立得,OB=4,
∴点B的坐标为(-4,0)
∴直线BC的解析式为y=$\frac{1}{2}$x+2;
故答案为:-4,0;y=$\frac{1}{2}$x+2;
(2)如图1:
解法一:过G点作x轴垂线,垂足为H,连接AG,设G(x0,y0),
在Rt△ACG中,∠AGC=60°,AC=$\sqrt{5}$,求得CG=$\frac{\sqrt{15}}{3}$,
又∵OB=4,
∴BC=$\sqrt{O{B}^{2}+O{C}^{2}}$=2$\sqrt{5}$,
∵OC∥GH,
∴$\frac{OH}{BO}=\frac{CG}{BC}$,则OH=$\frac{2\sqrt{3}}{3}$,即x0=$\frac{2\sqrt{3}}{3}$,
又∵点G在直线BC上,
∴y0=$\frac{1}{2}$×$\frac{2\sqrt{3}}{3}$+2
=$\frac{\sqrt{3}}{3}$+2,
∴G($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$+2),
解法二:过G点作y轴垂线,垂足为H,连接AG
在Rt△ACG中,∠AGC=60°,AC=$\sqrt{5}$,∴CG=$\frac{\sqrt{15}}{3}$,
由△BCO∽△GCH,得$\frac{CH}{GH}=\frac{CO}{BO}=\frac{1}{2}$,
即GH=2CH,
在Rt△CHG中,CG=$\frac{\sqrt{15}}{3}$,GH=2CH,得CH=$\frac{\sqrt{3}}{3}$,HG=$\frac{2\sqrt{3}}{3}$,
∴G($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$+2);
(3)方法一
如图2:
在移动过程中,存在点A,使△AEF为直角三角形.
若△AEF为直角三角形
∵AE=AF
∴△AEF为等腰三角形,
∴∠AEF=∠AFE≠90°,
∴∠EAF=90°,
过A作AM⊥BC于M,
在Rt△AEF中,EF=$\sqrt{A{E}^{2}+A{F}^{2}}$=$\sqrt{10}$,
AM=$\frac{1}{2}$EF=$\frac{1}{2}\sqrt{10}$,
证出△BOC∽△BMA得,$\frac{OC}{AM}=\frac{BC}{AB}$,
而BC=$\sqrt{O{C}^{2}+O{B}^{2}}$=2$\sqrt{5}$,OC=2,可得AB=$\frac{5\sqrt{2}}{2}$
∴OA=4-$\frac{5\sqrt{2}}{2}$,
∴A(-4+$\frac{5\sqrt{2}}{2}$,0),
当圆心A在点B的左侧时,设圆心为A′,
过A′作A′M′⊥BC于M′,可得△A′M′B′≌△AMB,
∴A′B=AB=$\frac{5\sqrt{2}}{2}$,
∴OA′=OB+A′B=4+$\frac{5\sqrt{2}}{2}$,
∴A′(-4-$\frac{5\sqrt{2}}{2}$,0),
∴A(-4+$\frac{5\sqrt{2}}{2}$,0)或A′(-4-$\frac{5\sqrt{2}}{2}$,0)
方法二:
如图3,
在移动过程中,存在点A,使△AEF为直角三角形
若△AEF为直角三角形
∵AE=AF
∴△AEF为等腰三角形
∴∠AEF=∠AFE≠90°
∴∠EAF=90°(11分)
过F作FM⊥x轴于M,EN⊥x轴于N,EH⊥MF于H
设AN=x,EN=y
由△AEN≌△FAM
可得AM=y,FM=x
FH=x-y
EH=x+y,由$\frac{FH}{EH}=\frac{OC}{OB}=\frac{1}{2}$,即$\frac{x-y}{x+y}=\frac{1}{2}$∴x=3y
在Rt△AEN中,
x2+y2=($\sqrt{5}$)2
x2+y2=5,
解得$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,
又∵$\frac{EN}{BN}=\frac{OC}{OB}=\frac{1}{2}$,
∴BN=2y,BN=$\sqrt{2}$,
∴AB=$\frac{3\sqrt{2}}{2}$+$\sqrt{2}$=$\frac{5\sqrt{2}}{2}$,
∴OA=4-$\frac{5\sqrt{2}}{2}$,
∴A(-4+$\frac{5\sqrt{2}}{2}$,0),
以下同解法一,得A′(-4-$\frac{5\sqrt{2}}{2}$,0).
∴A$({-4+\frac{5}{2}\sqrt{2},0})$或$({-4-\frac{5}{2}\sqrt{2},0})$;
点评 此题是圆的综合题,主要考查的是切线的性质及相似三角形的判定与性质、全等三角形的判定与性质,待定系数法求一次函数的解析式,涉及面较广,难度较大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com