精英家教网 > 初中数学 > 题目详情

如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

解:(1)∵抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)
∴将A与B两点坐标代入得:,解得:
∴抛物线的解析式是y=x2﹣3x。
(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1。
∴直线OB的解析式为y=x。
∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m。
∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x)。
又∵点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0。
∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4。
此时x1=x2=2,y=x2﹣3x=﹣2。
∴D点的坐标为(2,﹣2)。
(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3)。
根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=
∴直线A′B的解析式是y=
∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上。
∴设点N(n,),
又∵点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=,n2=4(不合题意,舍去)。
∴N点的坐标为()。
如图,将△NOB沿x轴翻折,得到△N1OB1

则N1),B1(4,﹣4)。
∴O、D、B1都在直线y=﹣x上。
由勾股定理,得OD=,OB1=
∵△P1OD∽△NOB,△NOB≌△N1OB1
∴△P1OD∽△N1OB1

∴点P1的坐标为()。
将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2)。
综上所述,点P的坐标是()或()。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.

(1)当t=     时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的
△APD与△PCQ重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线抛物线(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(              );
依此类推第n条抛物线yn的顶点坐标为(              );
所有抛物线的顶点坐标满足的函数关系是       
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)
(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案