精英家教网 > 初中数学 > 题目详情
10.如图,直线l:y=-3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

分析 (1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;
(2)设M的坐标为(m,-m2+2m+3),然后根据面积关系将△ABM的面积进行转化;
(3)①由(2)可知m=$\frac{5}{2}$,代入二次函数解析式即可求出纵坐标的值;
②可将求d1+d2最大值转化为求AC的最小值.

解答 解:(1)令x=0代入y=-3x+3,
∴y=3,
∴B(0,3),
把B(0,3)代入y=ax2-2ax+a+4,
∴3=a+4,
∴a=-1,
∴二次函数解析式为:y=-x2+2x+3;

(2)令y=0代入y=-x2+2x+3,
∴0=-x2+2x+3,
∴x=-1或3,
∴抛物线与x轴的交点横坐标为-1和3,
∵M在抛物线上,且在第一象限内,
∴0<m<3,
令y=0代入y=-3x+3,
∴x=1,
∴A的坐标为(1,0),
由题意知:M的坐标为(m,-m2+2m+3),
S=S四边形OAMB-S△AOB
=S△OBM+S△OAM-S△AOB
=$\frac{1}{2}$×m×3+$\frac{1}{2}$×1×(-m2+2m+3)-$\frac{1}{2}$×1×3
=-$\frac{1}{2}$(m-$\frac{5}{2}$)2+$\frac{25}{8}$
∴当m=$\frac{5}{2}$时,S取得最大值$\frac{25}{8}$.

(3)①由(2)可知:M′的坐标为($\frac{5}{2}$,$\frac{7}{4}$);
②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,
根据题意知:d1+d2=BF,
此时只要求出BF的最大值即可,
∵∠BFM′=90°,
∴点F在以BM′为直径的圆上,
设直线AM′与该圆相交于点H,
∵点C在线段BM′上,
∴F在优弧$\widehat{BM′H}$上,
∴当F与M′重合时,
BF可取得最大值,
此时BM′⊥l1
∵A(1,0),B(0,3),M′($\frac{5}{2}$,$\frac{7}{4}$),
∴由勾股定理可求得:AB=$\sqrt{10}$,M′B=$\frac{5\sqrt{5}}{4}$,M′A=$\frac{\sqrt{85}}{4}$,
过点M′作M′G⊥AB于点G,
设BG=x,
∴由勾股定理可得:M′B2-BG2=M′A2-AG2
∴$\frac{85}{16}$-($\sqrt{10}$-x)2=$\frac{125}{16}$-x2
∴x=$\frac{5\sqrt{10}}{8}$,
cos∠M′BG=$\frac{BG}{M′B}$=$\frac{\sqrt{2}}{2}$,
∵l1∥l′,
∴∠BCA=90°,
∠BAC=45°
方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2
∵S△ABM′=$\frac{1}{2}$×AC×(d1+d2
当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.
根据B(0,3)和M′($\frac{5}{2}$,$\frac{7}{4}$)可得BM′=$\frac{5\sqrt{5}}{4}$,
∵S△ABM=$\frac{1}{2}$×AC×BM′=$\frac{25}{8}$,∴AC=$\sqrt{5}$,
当AC⊥BM′时,cos∠BAC=$\frac{AC}{AB}$=$\frac{\sqrt{5}}{\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴∠BAC=45°.

点评 本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以 $\sqrt{2}$个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.
(1)求证:△PCE≌△EDQ;
(2)延长PC,QD交于点R.
①如图2,若∠MON=150°,求证:△ABR为等边三角形;
②如图3,若△ARB∽△PEQ,求∠MON大小和$\frac{AB}{PQ}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,己知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是(  )
A.30°B.45°C.20°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转.
(1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP.
(2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点E,F.连接EF,△BPE与△EFP是否相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,OA,OD是⊙O半径,过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B
(1)求证:直线CD是⊙O的切线;
(2)如果D点是BC的中点,⊙O的半径为3cm,求$\widehat{DE}$的长度(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=$\frac{1}{3}$AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3$\sqrt{3}$时,求旋转角的大小并指明旋转方向.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:-14+$\sqrt{12}$sin60°+($\frac{1}{2}$)-2-($π-\sqrt{5}$)0

查看答案和解析>>

同步练习册答案