分析 【应用】如图②中,过点A作AG⊥AE交CD延长线于点G.先证明△ABE≌△ADG,再证明△AEF≌△AGF,得到EF=FG,由此即可证明.
【拓展】如图③中,如图③中,过点A作AG⊥AE交CD延长线于点G.首先证明BE+DF=EF,由此即可计算四边形的周长.
解答 【应用】如图②中,过点A作AG⊥AE交CD延长线于点G.
∵四边形ABCD为正方形,
∴AB=AD,∠B=∠BAD=∠ADC=90°.
∴∠B=∠ADG=90°,∠BAE+∠EAD=90°.
∵AG⊥AE,∴∠DAG+∠EAD=90°.
∴∠BAE=∠DAG.
在△ABE和△ADG中,
$\left\{\begin{array}{l}{∠B=∠ADG}\\{∠BAE=∠GAD}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADG.
∴AE=AG,BE=DG.
∵∠EAF=45°,AG⊥AE,
∴∠EAF=∠GAF=45°.
在△FAE和△FAG中,
$\left\{\begin{array}{l}{AF=AF}\\{∠FAE=∠FAG}\\{AE=AG}\end{array}\right.$,
∴△AEF≌△AGF.
∴EF=FG.
∵FG=DF+DG=DF+BE,
∴BE+DF=EF.
【拓展】如图③中,过点A作AG⊥AE交CD延长线于点G.
∵AB=AD,∠ABC+∠ADC=180°,∠ADG+∠ADC=180°
∴∠ABE=∠ADG,
∵AG⊥AE,∴∠DAG+∠EAD=90°.
∵∠BAE+∠EAD=90°
∴∠BAE=∠DAG.
在△ABE和△ADG中,
$\left\{\begin{array}{l}{∠ABE=∠ADG}\\{AB=AD}\\{∠BAE=∠DAG}\end{array}\right.$,
∴△ABE≌△ADG.
∴AE=AG,BE=DG.
∵∠EAF=45°,AG⊥AE,
∴∠EAF=∠GAF=45°.
在△FAE和△FAG中,
$\left\{\begin{array}{l}{AF=AF}\\{∠FAE=∠FAG}\\{AE=AG}\end{array}\right.$,
∴△AEF≌△AGF.
∴EF=FG.
∵FG=DF+DG=DF+BE,
∴BE+DF=EF.
∴四边形BEFD的周长为EF+(BE+DF)+DB=1.7+1.7+3=6.4,
故答案为6.4
点评 本题考查四边形的综合题、全等三角形的判定和性质、正方形的性质等知识,解题的关键是学会由感知部分得到启发,添加辅助线构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com