精英家教网 > 初中数学 > 题目详情
正方形ABCD内一点P,AB=5,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP',则PP'的长为(  )精英家教网
A、2
2
B、2
3
C、3
D、3
2
分析:由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到
PP′=
2
BP,即可得到答案.
解答:解:∵△ABP绕点B顺时针旋转90°得到△CBP',
而四边形ABCD为正方形,BA=BC,
∴BP=BP′,∠PBP′=90,
∴△BPP′为等腰直角三角形,
而BP=2,
∴PP′=
2
BP=2
2

故选A.
点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图(1),P是正方形ABCD内一点,将△PBC绕点B按顺时针方向旋转后与△EBA重合.
(1)若PB=a,求PE的长;
(2)如图(2),P是正方形ABCD内一点,设PA=a,PB=
2
a,∠APB=135°,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,P是正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBP′位置,若BP=a,则PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD内一点P,PE⊥AD于E,若PB=PC=PE=5,则正方形的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

P为正方形ABCD内一点,且AP=2,将△APB绕A顺时针方向旋转60°,得到△AP′B′.
(1)作出旋转后的图形;
(2)试求△APP′的周长和面积.

查看答案和解析>>

同步练习册答案