分析 (1)①在矩形ABCD中,得到∠ABC=90°,解直角三角形即可得到结果;
②如图1,由BE⊥A,得到∠2+∠3=90°,由于∠1+∠3=90°,等量代换得到∠1=∠2,推出△AEB∽△BAC,得到比例式,即可得到结论;
(2)点E在线段AD上的任一点,且不与A、D重合,当△ABE与△BCE相似时,则∠BEC=90°当△BAE∽△CEB(如图2),∠1=∠BCE,又BC∥AD,由平行线的性质得到∠2=∠BCE,推出△BAE∽△EDC,得到比例式$\frac{x}{a}=\frac{a}{b-x}$,得到一元二次方程x2-bx+a2=0,根据方程根的情况,得到结论.
解答 解:(1)①∵在矩形ABCD中,
∴∠ABC=90°,
∵AB=a=5,sin∠ACB=$\frac{5}{13}$,
∴$\frac{AB}{AC}$=$\frac{5}{13}$,
∴AC=13,
∴BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=12,
∴b=12;
故答案为:12;
②如图1,∵BE⊥AC,
∴∠2+∠3=90°,
又∵∠1+∠3=90°,
∴∠1=∠2,
又∵∠BAE=∠ABC=90°,
∴△AEB∽△BAC,
∴$\frac{AE}{AB}=\frac{AB}{BC}$,
即$\frac{AE}{5}=\frac{5}{12}$,
∴$AE=\frac{25}{12}$;
(2)∵点E在线段AD上的任一点,且不与A、D重合,
∴当△ABE与△BCE相似时,则∠BEC=90°,
当△BAE∽△CEB(如图2)
∴∠1=∠BCE,
又∵BC∥AD,
∴∠2=∠BCE,
∴∠1=∠2,
又∵∠BAE=∠EDC=90°,
∴△BAE∽△EDC,
∴$\frac{AE}{DC}=\frac{AB}{DE}$,
即$\frac{x}{a}=\frac{a}{b-x}$,
∴x2-bx+a2=0,
即${(x-\frac{b}{2})^2}=\frac{{{b^2}-4{a^2}}}{4}$,
当b2-4a2≥0,
∵a>0,b>0,∴b≥2a,
即b≥2a时,$x=\frac{{b±\sqrt{{b^2}-4{a^2}}}}{2}$.
综上所述:当a、b满足条件b=2a时△BAE∽△CEB,此时$x=\frac{1}{2}b$(或x=a);当a、b满足条件b>2a时△BAE∽△CEB,此时$x=\frac{{b±\sqrt{{b^2}-4{a^2}}}}{2}$.
点评 本题考查了相似三角形的判定和性质,矩形的性质,一元二次方程根的情况,注意分类讨论思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com