【题目】如图,在长方形ABCD中,点A(1,8),B(1,6),C(7,6).
(1)请直接写出点D的坐标;
(2)连接线段OB,OD,BD,请求出△OBD的面积;
(3)若长方形ABCD以每秒1个单位长度的速度向下运动,设运动的时间为t秒,是否存在某一时刻,使△OBD的面积与长方形ABCD的面积相等?若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)D(7,8);(2)17;(3);
【解析】
(1)根据长方形的性质得出AB=DC,AD=BC,求出AD∥x轴,AB∥DC∥y轴,即可得出D的坐标;
(2)延长AB交x轴于M,延长DC交x轴于N,求出OM=1,BM=6,DN=8,NM=AD=6,ON=7,求出,代入求出即可.
(3)存在某一时刻,△OBD的面积与长方形ABCD的面积相等,分为两种情况:①当在第一象限内时,作AE⊥y轴,根据代入求出即可;②当在第四象限时,作BM⊥y轴于M,根据代入求出即可.
(1)∵四边形ABCD是长方形,
∴AB=DC,AD=BC,
∵点A(1,8),B(1,6),C(7,6).
∴AD∥x轴,AB∥DC∥y轴,
∴D的坐标是(7,8);
(2)延长AB交x轴于M,延长DC交x轴于N.
∵A(1,8),B(1,6),C(7,6),D(7,8),
∴OM=1,BM=6,DN=8,NM=AD=7-1=6,ON=7.
(3)存在某一时刻,△OBD的面积与长方形ABCD的面积相等,分两种情况:
①当在第一象限内时,作AE⊥y轴于E, 则,则由:,,解得:t=,
②当在第四象限时,作BM⊥y轴于M,则有.
∴.
综上,当 ,△OBD的面积与长方形ABCD的面积相等.
科目:初中数学 来源: 题型:
【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)
(1)求抛物线的表达式;
(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,E,F是对角线BD上的两点, 如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1) 请你判断DA与CE的位置关系,并说明理由;
(2) 若DA平分∠BDC,CE⊥AE于点E,∠1=70°,试求∠FAB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为1,分别倍长(延长一倍)AB,BC,CA得到△A1B1C1,再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此 规律,倍长n次后得到的△A2016B2016C2016的面积为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图像回答下列问题:
(1)小华在体育馆锻炼了_____分钟;
(2)体育馆离文具店______千米;
(3)小华从家跑步到体育馆,从文具店散步回家的速度分别是多少千米/分钟?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com