精英家教网 > 初中数学 > 题目详情
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=-
6
3
7
x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.
(1)连接AD,
∵△ABC是边长为4的等边三角形,又B的坐标为(-1,0),BC在x轴上,A在第一象限,
∴点C在x轴的正半轴上,
∴C的坐标为(3,0),由中点坐标公式,得:D的坐标为(1,0).
显然AD⊥BC且AD=
3
BD=2
3

∴A的坐标是(1,2
3
).
OE=
1
2
AD,得E(0,
3
);

(2)因为抛物线y=-
6
3
7
x2+bx+c过点A、E,
由待定系数法得:c=
3
,b=
13
3
7

抛物线的解析式为y=-
6
3
7
x2+
13
3
7
x+
3


(3)大家记得这样一个常识吗?
“牵牛从点A出发,到河边l喝水,再到点B处吃草,走哪条路径最短”即确定l上的点P,
方法是作点A关于l的对称点A',连接A'B与l的交点P即为所求.
本题中的AC就是“河”,B、D分别为“出发点”和“草地”.
由引例并证明后,得先作点D关于AC的对称点D',
连接BD'交AC于点P,则PB与PD的和取最小值,
即△PBD的周长L取最小值.
∵D、D′关于直线AC对称,
∴DD′⊥AC,即∠D′DC=30°,
DF=
3
,DD'=2
3

求得点D'的坐标为(4,
3
),
直线BD'的解析式为:y=
3
5
x+
3
5

直线AC的解析式为:y=-
3
x+3
3

求直线BD'与AC的交点可得点P的坐标(
7
3
2
3
3
).
此时BD'=
BG2+D′G2
=
52+(
3
)
2
=2
7

所以△PBD的最小周长L为2
7
+2,
把点P的坐标代入y=-
6
3
7
x2+
13
3
7
x+
3
成立,所以此时点P在抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线经过A、B、C三点,顶点为D,且与x轴的另一个交点为E.
(1)求该抛物线的解析式;
(2)求D和E的坐标,并求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数99象过点A(5,-1),B(1,1),C(-1,2),求此二次函数9解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线x=-
7
2
的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求?OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当?OEAF的面积为24时,请判断?OEAF是否为菱形?
②是否存在点E,使?OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.•

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x轴的另一个交点;
(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中(如图),已知二次函数y=x2+bx+c的图象经过点A(0,3)和点B(3,0),其顶点记为点C.
(1)确定此二次函数的解析式,并写出顶点C的坐标;
(2)将直线CB向上平移3个单位长度,求平移后直线l的解析式;
(3)在(2)的条件下,能否在直线上l找一点D,使得以点C、B、D、O为顶点的四边形是等腰梯形.若能,请求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案