精英家教网 > 初中数学 > 题目详情
如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是           时,为直角三角形.
(1);(2));
(3)

试题分析:(1)由可得,即可根据待定系数法求解;
(2)易得,设,根据待定系数法求得一次函数解析式,再根据三角形的面积公式求解即可;
(3)根据二次函数的性质及直角三角形的性质分类讨论即可.
(1)由可得

所以
(2)易得

解得
所以
所以
);
(3)
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公司营销A,B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系
当x=1时,y=1.4;当x=3时,y=3.6。
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系
根据以上信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,抛物线与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.M为y轴负半轴上的一个动点,直线MB交⊙P于点D,交抛物线于点N。

(1)请直接写出答案:点A坐标         ,⊙P的半径为          
(2)求抛物线的解析式;
(3)若,求N点坐标;
(4)若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=x2-2x-2的图象如上图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于二次函数y=2x2+3,下列说法中正确的是                ( )
A.它的开口方向是向下B.当x<-1时,y随x的增大而减小
C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,⊙Py轴相切于点C,与x轴交于Ax1,0),Bx2,0)两点,其中x1x2是方程x2-10x+16=0的两个根,且x1<x2,连接BC,AC.

(1)求过ABC三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小,若存在求出点Q的坐标,若不存在,请说明理由;
(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图像如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图像可能是(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为       

查看答案和解析>>

同步练习册答案