精英家教网 > 初中数学 > 题目详情
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)
(1)证明:连接OC,
∵AC=CD,
∴∠D=∠A=30°,
∵OC=OA,
∴∠A=∠OCA=30°,
∴∠COD=60°,
∴∠DC0=90°,
∴OC⊥DC,
∴CD是⊙O的切线;

(2)∵∠COD=60°,
∴∠COA=180°-60°=120°,
∴弧AC的长为:
nπr
180
=
120×π×6
180
=4π.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O直径,OD过弦BC的中点F,且交⊙O于点E,若∠AEC=∠ODB.求证:直线BD和⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针方向旋转60°到OD,则PD的长为(  )
A.
7
B.
31
2
C.
5
D.2
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA和OB是⊙O的半径,OB=2,OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R.
(Ⅰ)求证:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

⊙O是△ABC的外接圆,AB是直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若圆的半径为3,BD=2,DC=4,求AE和BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CDBF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BCOP且交⊙O于点C,请准确判断直线PC与⊙O是怎样的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,A是⊙O上的一点,AC为⊙O的切线,AB为弦,若∠B=59°,则∠BAC=______度.

查看答案和解析>>

同步练习册答案