精英家教网 > 初中数学 > 题目详情

如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以1个单位/秒的速度从A向C运动,点Q以2个单位/秒的速度同时沿A→B→C方向运动,⊙P和⊙Q的半径都为1.求:
(1)求圆心距PQ的最大值;
(2)设运动时间为t,求两圆相切时t的值;
(3)当t为何值时,两圆相离.

解:(1)由题意可知,当点Q与点B重合时,两圆的圆心距PQ最大,
∵Rt△ABC中,∠C=90°,AC=8,BC=6,
∴AB=10,
∴⊙Q运动了10÷2=5秒,
∴PC=8-5=3,
∴PQ==3

(2)分两种情况:
①如图1,作QD⊥AC,此时,AP=t,AQ=2t,PQ=2,
∴△AQD∽△ABC,
=,即=,得QD=t,
-t=
解得,t=
②如图2,此时,AP=t,PQ=2,
∴PC=8-t,QC=16-2t,
∴QC2+PC2=PQ2
即(16-2t)2+(8-t)2=22
解得,t=8+(舍去),t=8-
综上,当t=或t=8-时,两圆相切;

(3)由(2)可得,
<t<8-时,两圆相离.
分析:(1)由题意知,当点Q与点B重合时,两圆的圆心距PQ最大,可得出PC,根据勾股定理,即可求得PQ的长;
(2)分两种情况,讨论解答,第一次相切时,如图一,作QD⊥AC,根据相似三角形的性质,可得出QD=t,然后,根据勾股定理列出等式,即可得出t值;第二次相切时,如图二,可得出PC=8-t,QC=16-2t,根据勾股定理,即可得出;
(3)由(2)可知,两圆相离时,t的取值;
点评:本题主要考查了圆与圆的位置关系,知道圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离?d>R+r;②两圆外切?d=R+r.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是
B,E,D,F
E,D,C,G
;构成等腰梯形的四个顶点是
B,E,D,C
E,D,G,F

(2)请你各选择其中一个图形加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC是⊙O的内接三角形,∠BAC=90°,AH⊥BC,垂足为D,过点B作弦BF交AD于点精英家教网E,交⊙O于点F,且AE=BE.
(1)求证:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中,∠CAB=30°,BC=5.过点A做AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中∠A=90°,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为
14
14

查看答案和解析>>

同步练习册答案