精英家教网 > 初中数学 > 题目详情
在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形
【小题1】如图1, E是AB的中点,连结CE并延长交AD于F.
求证:① △AEF≌△BEC;
② 四边形BCFD是平行四边形;
【小题2】如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
C
【小题1】① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°, ∴ ∠BAD=∠ABC="60°" .      
∵ E为AB的中点,∴ AE=BE.                                
又∵ ∠AEF=∠BEC ,  ∴ △AEF≌△BEC                      3分
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=AB,BE=AB, ∴ ∠BCE=∠EBC="60°" .                          
又∵ △AEF≌△BEC,  ∴ ∠AFE=∠BCE="60°" .
又∵ ∠D=60°, ∴ ∠AFE=∠D=60° ∴ FC∥BD      
又∵ ∠BAD=∠ABC=60°,∴ AD∥BC,即FD∥BC                
∴ 四边形BCFD是平行四边形.
【小题2】解析:
which引导非限制性定语从句,which常用作实意动词的主语。① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°, ∴ ∠BAD=∠ABC="60°" .      
∵ E为AB的中点,∴ AE=BE.                                
又∵ ∠AEF=∠BEC ,  ∴ △AEF≌△BEC                      3分
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=AB,BE=AB, ∴ ∠BCE=∠EBC="60°" .                          
又∵ △AEF≌△BEC,  ∴ ∠AFE=∠BCE="60°" .
又∵ ∠D=60°, ∴ ∠AFE=∠D=60° ∴ FC∥BD      
又∵ ∠BAD=∠ABC=60°,∴ AD∥BC,即FD∥BC                
∴ 四边形BCFD是平行四边形.
(2)∵∠BAD=60°,∠CAB=30° ∴∠CAH=90°
在Rt△ABC中,∠CAB=30°,设BC =a
∴ AB=2BC=2a,∴ AD=AB=2a.
设AH =" x" ,则 HC=HD=AD-AH=2a-x.           
在Rt△ABC中,AC2=(2a) 2-a2=3a2.
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a-x) 2.
解得 x=a,即AH=a.
∴ HC=2a-x=2a-a=a    
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案