精英家教网 > 初中数学 > 题目详情
11.如图,已知AB=AC=AD,且∠C=2∠D,求证AD∥BC.

分析 欲证明AD∥BC,只需推知∠CBD=∠D即可.

解答 证明:∵AB=AC=AD,
∴∠C=∠ABC,∠D=∠ABD,
∵∠C=2∠D,
∴∠ABC=2∠ABD,
∴∠ABD=∠CBD=∠D,
∴AD∥BC.

点评 本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.计算(3x+9)(6x+8)=18x2+78x+72.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<$\frac{8}{5}$).

发现:
(1)BD=10;
(2)当t=$\frac{1}{2}$时,正方形PQMN的边长为$\frac{3}{2}$;
思考:如图2,连接DQ平分∠BDC时,t的值为1;
探究:如图3,在运动过程中,当QM与⊙O相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)先化简,再求代数式的值:(1-$\frac{1}{m+2}$)÷$\frac{{m}^{2}+2m+1}{{m}^{2}-4}$,其中m=1.
(2)解方程:$\frac{1}{x+2}$+$\frac{1}{2x-1}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解下列方程
(1)x2+2x-1=0
(2)3(x-1)2=x(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)(-1)•i=-i,i4=(i22=(-1)2=1,从而对任意正整数n,则i6=(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在Rt△ABC中,∠B=30°,BC=$\sqrt{3}$,以BC为直径画半圆,交斜边AB于D,则图中阴影部分的面积为$\frac{5\sqrt{3}}{16}$-$\frac{π}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.A、B、C、D、E五位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定A打第一场,再从其余四位同学中随机选取一位,求恰好选中B同学的概率;
(2)请用画树状图或列表法,求恰好选中A、B两位同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,等边△ABC是⊙O的内接三角形,P是$\widehat{BC}$上一点,当PB=3PC时,则△ABC与四边形ABPC的面积比为(  )
A.$\frac{13}{16}$B.$\frac{10}{13}$C.$\frac{9}{11}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案