精英家教网 > 初中数学 > 题目详情
如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP相交于点O,
(1)求证:△ABP≌△ACQ;
(2)求∠BOQ的度数.
分析:(1)根据全等三角形的判定定理SAS证得结论;
(2)利用(1)中全等三角形的对应角相等得到∠BOQ=∠BAC=60°.
解答:解:(1)如图,在等边△ABC中,AB=AC,∠BAC=∠C=60°,
在△ABP与△ACQ中,
AB=AC
∠BAP=∠CAQ
AP=CQ

∴△ABP≌△ACQ(SAS);

(2)由(1)知,△ABP≌△ACQ,
∴∠ABP=∠CAQ,
∴∠BOQ=∠ABO+∠BAQ=∠CAQ+∠BAQ=∠BAC=60°,即∠BOQ的度数是60°.
点评:本题考查了全等三角形的判定与性质、等边三角形的性质.解答(2)题时,利用了三角形外角定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届山东胜利七中九年级中考二模数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖北黄冈卷)数学 题型:解答题

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市考数学一模试卷 题型:选择题

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

同步练习册答案