精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,M是边AB的中点,D是边BC延长线上一点,DC=
12
BC
,DN∥CM,交边A精英家教网C于点N.
(1)求证:MN∥BC;
(2)当∠ACB为何值时,四边形BDNM是等腰梯形?并证明你的猜想.
分析:(1)此题又有两种证法:
证法一:取边BC的中点E,连接ME,利用已知条件求证△MEC≌△NCD.可得CM=DN,又利用CM∥DN,
可证四边形MCDN是平行四边形即可.
证法二:延长CD到F,使得DF=CD,连接AF.由CD=
1
2
BC
,CD=DF,可得BC=CF,再利用MC∥DN,可得ND∥AF,再利用CD=DF,可证MN∥BC即可.
(2)根据MN∥BD,BM与DN不平行,可得四边形BDNM是梯形,再利用∠ACB=90°,可得CM=BM=AM,然后即可证明四边形BDNM是等腰梯形.
解答:精英家教网(1)证法一:取边BC的中点E,连接ME.
∵M是边AB的中点,
∴BM=AM,BE=EC,∴ME∥AC.
∴∠MEC=∠NCD.
CD=
1
2
BC
,∴CD=CE.
∵DN∥CM,∴∠MCE=∠D.
∴△MEC≌△NCD.
∴CM=DN.
又∵CM∥DN,
∴四边形MCDN是平行四边形.
∴MN∥BC.
证法二:延长CD到F,使得DF=CD,连接AF.精英家教网
CD=
1
2
BC
,CD=DF,
∴BC=CF.
∵BM=AM,
∴MC∥AF.
∵MC∥DN,
∴ND∥AF.
又∵CD=DF,
∴CN=AN.
∴MN∥BC.

(2)答:当∠ACB=90°时,四边形BDNM是等腰梯形.
证明:∵MN∥BD,BM与DN不平行,
∴四边形BDNM是梯形,
∵∠ACB=90°
M是边AB的中点,
∴BM=AM,
∵CM是Rt△ABC的中线,
∴CM=BM=AM,
∵CM=DN,
∴BM=DN,
∴四边形BDNM是等腰梯形.
点评:此题主要考查了等腰梯形的判定,全等三角形的判定与性质,平行四边形的性质等知识点,综合性较强,是一道典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案